Kopykıtab

Same textbooks, klifck away

NCERT Class 12 Maths

Solutions

Chapter - 4

Determinants

Exercise 4.2

Using the properties of determinants and without expanding in Exercises 1 to 5, prove that:

1. $\left|\begin{array}{lll}x & a & x+a \\ \boldsymbol{y} & b & y+b \\ z & c & z+\boldsymbol{c}\end{array}\right|=0$.

Sol. On $\left|\begin{array}{ccc}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|$, operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}$
$=\left|\begin{array}{lll}x+a & a & x+a \\ y+b & b & y+b \\ z+c & c & z+c\end{array}\right|=0 . \quad\left(\because \mathrm{C}_{1}\right.$ and C_{3} are identical $)$
2. $\left|\begin{array}{lll}\boldsymbol{a}-\boldsymbol{b} & \boldsymbol{b}-\boldsymbol{c} & \boldsymbol{c}-\boldsymbol{a} \\ \boldsymbol{b}-\boldsymbol{c} & \boldsymbol{c}-\boldsymbol{a} & \boldsymbol{a}-\boldsymbol{b} \\ \boldsymbol{c}-\boldsymbol{a} & \boldsymbol{a}-\boldsymbol{b} & \boldsymbol{b}-\boldsymbol{c}\end{array}\right|=\mathbf{0}$.

Sol. On $\left|\begin{array}{lll}a-b & b-c & c-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|$, operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$

$$
=\left|\begin{array}{lll}
a-b+b-c+c-a & b-c & c-a \\
b-c+c-a+a-b & c-a & a-b \\
c-a+a-b+b-c & a-b & b-c
\end{array}\right|=\left|\begin{array}{ccc}
0 & b-c & c-a \\
0 & c-a & a-b \\
0 & a-b & b-c
\end{array}\right|=0 .
$$

$(\because$ All entries of one column here first are zero)
Note: The reader can do the above problem by operating $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$ also.
3. $\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$.

Sol. On $\left|\begin{array}{ccc}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|$, operate $C_{3} \rightarrow C_{3}-C_{1}=\left|\begin{array}{ccc}2 & 7 & 63 \\ 3 & 8 & 72 \\ 5 & 9 & 81\end{array}\right|$
Taking 9 common from third column $=9\left|\begin{array}{lll}2 & 7 & 7 \\ 3 & 8 & 8 \\ 5 & 9 & 9\end{array}\right|=9(0)=0$.
[Because two columns (one and three) are identical]
4. $\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$

Sol. The given determinant is $\left|\begin{array}{ccc}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=\left|\begin{array}{lll}1 & b c & a b+a c \\ 1 & c a & b c+b a \\ 1 & a b & a c+b c\end{array}\right|$
Operate $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2},=\left|\begin{array}{lll}1 & b c & a b+b c+a c \\ 1 & c a & a b+b c+a c \\ 1 & a b & a b+b c+a c\end{array}\right|$
Taking $(a b+b c+a c)$ common from C_{3},
$=(a b+b c+a c)\left|\begin{array}{ccc}1 & b c & 1 \\ 1 & c a & 1 \\ 1 & a b & 1\end{array}\right|$
$=(a b+b c+a c) 0=0 . \quad\left(\because \mathrm{C}_{1}\right.$ and C_{3} are identical $)$
5. $\left|\begin{array}{ccc}\boldsymbol{b}+\boldsymbol{c} & \boldsymbol{q}+\boldsymbol{r} & \boldsymbol{y}+\boldsymbol{z} \\ \boldsymbol{c}+\boldsymbol{a} & \boldsymbol{r}+\boldsymbol{p} & \boldsymbol{z}+\boldsymbol{x} \\ \boldsymbol{a}+\boldsymbol{b} & \boldsymbol{p}+\boldsymbol{q} & \boldsymbol{x}+\boldsymbol{y}\end{array}\right|=2\left|\begin{array}{lll}\boldsymbol{a} & \boldsymbol{p} & \boldsymbol{x} \\ \boldsymbol{b} & \boldsymbol{q} & \boldsymbol{y} \\ \boldsymbol{c} & \boldsymbol{r} & \boldsymbol{z}\end{array}\right|$.

Sol. L.H.S. $=\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|$
Operate $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
b+c+c+a+a+b & q+r+r+p+p+q & y+z+z+x+x+y \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right| \\
& =\left|\begin{array}{ccc}
2(a+b+c) & 2(p+q+r) & 2(x+y+z) \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
\end{aligned}
$$

Taking 2 common from R_{1}

$$
=2\left|\begin{array}{ccc}
a+b+c & p+q+r & x+y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
$$

Operate $R_{1} \rightarrow R_{1}-R_{2}$ (to get single letter entries as required in the determinant on R.H.S.)

$$
=2\left|\begin{array}{ccc}
b & q & y \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
$$

Now operate $R_{3} \rightarrow R_{3}-R_{1}$ (to get single letter entries as required in the determinant on R.H.S.)

$$
=2\left|\begin{array}{ccc}
b & q & y \\
c+a & r+p & z+x \\
a & p & x
\end{array}\right|
$$

Now operate $R_{2} \rightarrow R_{2}-R_{3}$ (objective being same as in the above two operations)

$$
=2\left|\begin{array}{lll}
b & q & y \\
c & r & z \\
a & p & x
\end{array}\right|
$$

Interchanging R_{2} and $\mathrm{R}_{3},=-2\left|\begin{array}{ccc}b & q & y \\ a & p & x \\ c & r & z\end{array}\right|$
Interchanging R_{1} and R_{2},

$$
=-(-2)\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|=\text { R.H.S. }
$$

By using properties of determinants, in Exercise 6 to 14, show that:
6. $\quad\left|\begin{array}{rrr}0 & \boldsymbol{a} & -\boldsymbol{b} \\ -\boldsymbol{a} & \mathbf{0} & -\boldsymbol{c} \\ \boldsymbol{b} & \boldsymbol{c} & \mathbf{0}\end{array}\right|=\mathbf{0}$.

Sol. \quad Let $\Delta=\left|\begin{array}{rrr}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|$
Taking (-1) common from each row, we have

$$
\Delta=(-1)^{3}\left|\begin{array}{rrr}
0 & -a & b \\
a & 0 & c \\
-b & -c & 0
\end{array}\right|
$$

Interchanging rows and columns in the determinant on R.H.S.,

$$
\begin{align*}
\Delta & =-\left|\begin{array}{rrr}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right| \\
\Rightarrow \Delta & =-\Delta
\end{align*}
$$

Shifting $-\Delta$ from R.H.S. to L.H.S., $\Delta+\Delta=0$ or $2 \Delta=0$
$\therefore \quad \Delta=\frac{0}{2}=0$.
Note. 1. We can also do this question by taking (-1) common from each column.
2. When you are asked to prove that a determinant is equal to zero or two determinants are equal, then it is to be proved so only without expanding.
3. It may be remarked that the determinant of Q. No. 6 above is determinant of a skew symmetric matrix of order 3 .
7. $\quad\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|=4 a^{2} b^{2} c^{2}$.

Sol. \quad L.H.S. $=\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|$
Taking a, b, c common from $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ respectively,

$$
=a b c\left|\begin{array}{rrr}
-a & b & c \\
a & -b & c \\
a & b & -c
\end{array}\right|
$$

Operate $R_{1} \rightarrow R_{1}+R_{2}$ (to create two zeros in a line (here first row))

$$
=a b c\left|\begin{array}{rrr}
0 & 0 & 2 c \\
a & -b & c \\
a & b & -c
\end{array}\right|
$$

Expanding along first row (\because There are two zeros in it)

$$
\begin{aligned}
& =a b c \cdot 2 c\left|\begin{array}{rr}
a & -b \\
a & b
\end{array}\right|=a b c \cdot 2 c(a b+a b) \\
& =a b c \cdot 2 c \cdot 2 a b=4 a^{2} b^{2} c^{2}=\text { R.H.S. }
\end{aligned}
$$

Note. Whenever we are asked to find the value of a determinant by using "Properties of Determinants", we must create two zeros in a line (Row or Column).
8. (i) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$.

Sol.
(i) L.H.S. $=\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$

Operating $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$ and $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$

$$
=\left|\begin{array}{ccc}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right|
$$

Expanding along first column

$$
=1\left|\begin{array}{ll}
b-a & b^{2}-a^{2} \\
c-a & c^{2}-a^{2}
\end{array}\right|=\left|\begin{array}{ll}
(b-a) & (b-a)(b+a) \\
(c-a) & (c-a)(c+a)
\end{array}\right|
$$

Taking out $(b-a)$ common from first row and $(c-a)$ common from second row

$$
\begin{aligned}
& =(b-a)(c-a)\left|\begin{array}{ll}
1 & b+a \\
1 & c+a
\end{array}\right| \\
& =(b-a)(c-a)(c+a-b-a)=(b-a)(c-a)(c-b) \\
& =-(a-b)(c-a)(-(b-c))=(a-b)(b-c)(c-a)
\end{aligned}
$$

Remark. For expanding a determinant of order 3 we should make all entries except one entry of a row or column as zeros (i.e., we should make two entries as zeros) and then expand the determinant along this row or column. For doing so, the ideal situation is that all entries of a row or column are 1 each.
If each entry of a column is 1 , then, to create two zeros, subtract first row from each of the remaining two rows.
If each entry of a row is 1 , then to create two zeros, subtract first column from each of the remaining two columns.
(ii) \quad L.H.S. $=\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|$

Here all entries of a row are 1 each.
So operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}, \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ (to creat two zeros in a line (here first row))

$$
=\left|\begin{array}{ccc}
1 & 0 & 0 \\
a & b-a & c-a \\
a^{3} & b^{3}-a^{3} & c^{3}-a^{3}
\end{array}\right|
$$

Expanding along first row, $=1\left|\begin{array}{cc}b-a & c-a \\ b^{3}-a^{3} & c^{3}-a^{3}\end{array}\right|$ (Forming factors)

$$
=\left|\begin{array}{cc}
(b-a) & (c-a) \\
(b-a)\left(b^{2}+a^{2}+a b\right) & (c-a)\left(c^{2}+a^{2}+a c\right)
\end{array}\right|
$$

Taking $(b-a)$ common from C_{1} and $(c-a)$ common from C_{2},

$$
\begin{aligned}
& =(b-a)(c-a)\left|\begin{array}{c}
1 \\
b^{2}+a^{2}+a b
\end{array}\right| \\
& =(b-a)(c-a)\left(c^{2}+a^{2}+a c-a^{2}+a c \mid\right. \\
& =(b-a)(c-a)\left(c^{2}-b^{2}+a c-a b\right) \\
& =(b-a)(c-a)[(c-b)(c+b)+a(c-b)] \\
& =(b-a)(c-a)(c-b)(c+b+a) \\
& =-(a-b(c-a)[-(b-c)](a+b+c) \\
& =(a-b)(b-c)(c-a)(a+b+c)=\text { R.H.S. }
\end{aligned}
$$

9. $\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$.

Sol. L.H.S. $=\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|$
Multiplying $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ by x, y, z respectively (to make each entry of third column same here ($x y z$))

$$
=\frac{1}{x y z}\left|\begin{array}{lll}
x^{2} & x^{3} & x y z \\
y^{2} & y^{3} & x y z \\
z^{2} & z^{3} & x y z
\end{array}\right|
$$

Taking $x y z$ common from $\mathrm{C}_{3},=\frac{x y z}{x y z}\left|\begin{array}{ccc}x^{2} & x^{3} & 1 \\ y^{2} & y^{3} & 1 \\ z^{2} & z^{3} & 1\end{array}\right|=\left|\begin{array}{ccc}x^{2} & x^{3} & 1 \\ y^{2} & y^{3} & 1 \\ z^{2} & z^{3} & 1\end{array}\right|$
Now all entries of a column are same. So operate $R_{2} \rightarrow R_{2}-R_{1}$, $R_{3} \rightarrow R_{3}-R_{1}$ to create two zeros in a column.

$$
=\left|\begin{array}{ccc}
x^{2} & x^{3} & 1 \\
y^{2}-x^{2} & y^{3}-x^{3} & 0 \\
z^{2}-x^{2} & z^{3}-x^{3} & 0
\end{array}\right|
$$

Expanding along third column $=1\left|\begin{array}{ll}y^{2}-x^{2} & y^{3}-x^{3} \\ z^{2}-x^{2} & z^{3}-x^{3}\end{array}\right|$
(Forming factors) $=\left|\begin{array}{cc}(y-x)(y+x) & (y-x)\left(y^{2}+x^{2}+x y\right) \\ (z-x)(z+x) & (z-x)\left(z^{2}+x^{2}+z x\right)\end{array}\right|$
Taking $(y-x)$ common from R_{1} and $(z-x)$ common from R_{2}

$$
\begin{aligned}
& =(y-x)(z-x)\left|\begin{array}{ll}
y+x & y^{2}+x^{2}+x y \\
z+x & z^{2}+x^{2}+z x
\end{array}\right| \\
& =(y-x)(z-x)\left[(y+x)\left(z^{2}+x^{2}+z x\right)-(z+x)\left(y^{2}+x^{2}+x y\right)\right] \\
& =(y-x)(z-x)\left[y z^{2}+y x^{2}+x y z+x z^{2}+x^{3}+x^{2} z\right.
\end{aligned}
$$

$$
\left.-z y^{2}-z x^{2}-x y z-x y^{2}-x^{3}-x^{2} y\right]
$$

$=(y-x)(z-x)\left[y z^{2}-z y^{2}+x z^{2}-x y^{2}\right]$
$=(y-x)(z-x)\left[\boldsymbol{y z}(\boldsymbol{z}-\boldsymbol{y})+\boldsymbol{x}\left(\boldsymbol{z}^{2}-\boldsymbol{y}^{2}\right)\right]$
$=(y-x)(z-x)[y z(z-y)+x(z-y)(z+y)]$
$=(y-x)(z-x)(z-y)[y z+x(z+y)]$
$=-(x-y)(z-x)[-(y-z)](y z+x z+x y)$
$=(x-y)(y-z)(z-x)(x y+y z+z x)=$ R.H.S.
10. (i) $\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$.
(ii) $\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 y+k)$.

Sol. (i) L.H.S. $=\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|$
Here sum of entries of each column is same ($=5 x+4$), so let us operate $\mathbf{R}_{\mathbf{1}} \rightarrow \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$ to make all entries of first row equal $(=5 x+4)$.

$$
=\left|\begin{array}{ccc}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
$$

Taking $(5 x+4)$ common from R_{1},

$$
=(5 x+4)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|
$$

Now each entry of one (here first) row is 1 , so let us operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ to create two zeros in a zero.

$$
=(5 x+4)\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 x & 4-x & 0 \\
2 x & 0 & 4-x
\end{array}\right|
$$

Expanding along first row

$$
\begin{aligned}
& =(5 x+4) \cdot 1\left|\begin{array}{cc}
4-x & 0 \\
0 & 4-x
\end{array}\right| \\
& =(5 x+4)(4-x)^{2}=\text { R.H.S. }
\end{aligned}
$$

Remark. We could also start here by operating

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} .
$$

(ii) L.H.S. $=\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|$

Here sum of entries of each row is same $(=3 y+k)$, so let us operate $\mathbf{C}_{\mathbf{1}} \rightarrow \mathbf{C}_{\mathbf{1}}+\mathbf{C}_{\mathbf{2}}+\mathbf{C}_{\mathbf{3}}$ to make all entries of first column equal $(=3 y+k)$

$$
=\left|\begin{array}{ccc}
3 y+k & y & y \\
3 y+k & y+k & y \\
3 y+k & y & y+k
\end{array}\right|
$$

Taking $(3 y+k)$ common from C_{1},

$$
=(3 y+k)\left|\begin{array}{ccc}
1 & y & y \\
1 & y+k & y \\
1 & y & y+k
\end{array}\right|
$$

Now each entry of one (here first) column is 1 , so let us operate $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$ to create two zeros in a column,

$$
=(3 y+k)\left|\begin{array}{ccc}
1 & y & y \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right|
$$

Expanding along first column, $=(3 y+k) \cdot 1\left|\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right|$

$$
=(3 y+k) k^{2}=k^{2}(3 y+k)=\text { R.H.S. }
$$

Remark. We could also start here by operating

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} .
$$

11.

Sol.
(i) L.H.S. $=\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$

Here sum of entries of each column is same $(=a+b+c)$, so let us operate $\mathbf{R}_{\mathbf{1}} \rightarrow \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$ to make all entries of first row equal $(=a+b+c)$

$$
=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

Taking $(a+b+c)$ common from R_{1},

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|
$$

Now each entry of one (here first) row is 1 , so let us
operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ to create two zeros in a row,

$$
=(a+b+c)\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 b & -b-c-a & 0 \\
2 c & 0 & -c-a-b
\end{array}\right|
$$

Expanding along first row

$$
\begin{aligned}
& =(a+b+c) \cdot 1 \cdot\left|\begin{array}{cc}
-b-c-a & 0 \\
0 & -c-a-b
\end{array}\right| \\
& =(a+b+c)[(-b-c-a)(-c-a-b)] \\
& =(a+b+c)(-)(b+c+a)(-)(c+a+b) \\
& =(a+b+c)^{3}=\text { R.H.S. }
\end{aligned}
$$

Remark. Here we can't operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ because sum of entries of each row is not same.
(ii) L.H.S. $=\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|$

Here sum of entries of each row is same $(=2 x+2 y+2 z=$ $2(x+y+z)$), so let us operate $\mathbf{C}_{1} \rightarrow \mathbf{C}_{1}+\mathbf{C}_{2}+\mathbf{C}_{\mathbf{3}}$ to make all entries of first column equal $(=2(x+y+z))$

$$
=\left|\begin{array}{ccc}
2(x+y+z) & x & y \\
2(x+y+z) & y+z+2 x & y \\
2(x+y+z) & x & z+x+2 y
\end{array}\right|
$$

Taking $2(x+y+z)$ common from C_{1},

$$
=2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
1 & y+z+2 x & y \\
1 & x & z+x+2 y
\end{array}\right|
$$

Now each entry of one (here first) column is 1 , so let us operate $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$ to create two zeros in a column

$$
=2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
0 & x+y+z & 0 \\
0 & 0 & x+y+z
\end{array}\right|
$$

Expanding along first column

$$
\begin{aligned}
& =2(x+y+z) \cdot 1 \cdot\left|\begin{array}{cc}
x+y+z & 0 \\
0 & x+y+z
\end{array}\right| \\
& =2(x+y+z)\left[(x+y+z)^{2}-0\right] \\
& =2(x+y+z)^{3}=\text { R.H.S. }
\end{aligned}
$$

12. $\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$.

Sol. L.H.S. $=\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|$
Here sum of entries of each column is same ($=1+x+x^{2}$), so let us operate $\mathbf{R}_{\mathbf{1}} \rightarrow \mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}$ to make all entries of first row equal ($=1+x+x^{2}$)

$$
=\left|\begin{array}{ccc}
1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
$$

Taking ($1+x+x^{2}$) common from R_{1},

$$
=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}
1 & 1 & 1 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
$$

Now each entry of one (here first) row is 1 , so let us operate $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$ to create two zeros in a row.

$$
=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}
1 & 0 & 0 \\
x^{2} & 1-x^{2} & x-x^{2} \\
x & x^{2}-x & 1-x
\end{array}\right|
$$

Expanding along first row

$$
\begin{aligned}
& =\left(1+x+x^{2}\right) \cdot 1\left|\begin{array}{cc}
1-x^{2} & x-x^{2} \\
x^{2}-x & 1-x
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left|\begin{array}{cc}
(1-x)(1+x) & x(1-x) \\
-x(1-x) & (1-x)
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left[(1-x)^{2}(1+x)+x^{2}(1-x)^{2}\right] \\
& =\left(1+x+x^{2}\right)(1-x)^{2}\left(1+x+x^{2}\right)=\left(1+x+x^{2}\right)^{2}(1-x)^{2} \\
& =\left[\left(1+x+x^{2}\right)(1-x)\right]^{2} \\
& =\left(1-x+x-x^{2}+x^{2}-x^{3}\right)^{2}=\left(1-x^{3}\right)^{2}=\text { R.H.S. }
\end{aligned}
$$

Remark. For the above question, we could also operate $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ because sum of entries of each row is also same and $\left(=1+x+x^{2}\right)$.
13. $\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}$.

Sol. Operating $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-b \mathrm{C}_{3}, \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+a \mathrm{C}_{3}$ in L.H.S. as suggested by the factor $\left(1+a^{2}+b^{2}\right)$ in R.H.S.
L.H.S. $=\left|\begin{array}{ccc}1+a^{2}+b^{2} & 0 & -2 b \\ 0 & 1+a^{2}+b^{2} & 2 a \\ b\left(1+a^{2}+b^{2}\right) & -a\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2}\end{array}\right|$
$\left[\because 2 b-b\left(1-a^{2}-b^{2}\right)=2 b-b+a^{2} b+b^{3}\right.$
$\left.=b+a^{2} b+b^{3}=b\left(1+a^{2}+b^{2}\right)\right]$
Taking out $\left(1+a^{2}+b^{2}\right)$ common from C_{1} and C_{2}

$$
=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{rrc}
1 & 0 & -2 b \\
0 & 1 & 2 a \\
b & -a & 1-a^{2}-b^{2}
\end{array}\right|
$$

Operating $R_{3} \rightarrow R_{3}-b R_{1}$ (to create another zero in first column)

$$
=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{rrc}
1 & 0 & -2 b \\
0 & 1 & 2 a \\
0 & -a & 1-a^{2}+b^{2}
\end{array}\right|
$$

Expanding along C_{1}

$$
\begin{aligned}
& =\left(1+a^{2}+b^{2}\right)^{2} \cdot 1\left|\begin{array}{cc}
1 & 2 a \\
-a & 1-a^{2}+b^{2}
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left(1-a^{2}+b^{2}+2 a^{2}\right)=\left(1+a^{2}+b^{2}\right)^{3}
\end{aligned}
$$

14. $\quad\left|\begin{array}{ccc}a^{2}+1 & a b & a c \\ a b & b^{2}+1 & b c \\ c a & c b & c^{2}+1\end{array}\right|=1+a^{2}+b^{2}+c^{2}$.

Sol. Multiplying $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ by a, b, c respectively and in return dividing the determinant by $a b c$,

$$
\Delta=\frac{1}{a b c}\left|\begin{array}{ccc}
a\left(a^{2}+1\right) & a b^{2} & a c^{2} \\
a^{2} b & b\left(b^{2}+1\right) & b c^{2} \\
a^{2} c & b^{2} c & c\left(c^{2}+1\right)
\end{array}\right|
$$

Taking out a, b, c common from $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ respectively,

$$
\begin{aligned}
& =\frac{a b c}{a b c}\left|\begin{array}{ccc}
a^{2}+1 & b^{2} & c^{2} \\
a^{2} & b^{2}+1 & c^{2} \\
a^{2} & b^{2} & c^{2}+1
\end{array}\right| \text { Operating } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \\
& =\left|\begin{array}{ccc}
1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2} \\
1+a^{2}+b^{2}+c^{2} & b^{2}+1 & c^{2} \\
1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2}+1
\end{array}\right|
\end{aligned}
$$

Taking out $\left(1+a^{2}+b^{2}+c^{2}\right)$ common from C_{1},

$$
=\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & b^{2} & c^{2} \\
1 & b^{2}+1 & c^{2} \\
1 & b^{2} & c^{2}+1
\end{array}\right|
$$

Operating $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$,

$$
=\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & b^{2} & c^{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|
$$

Expanding along first column,

$$
=\left(1+a^{2}+b^{2}+c^{2}\right) \times 1(1-0)=1+a^{2}+b^{2}+c^{2} .
$$

Choose the correct answer in Exercises 15 and 16:
15. Let A be a square matrix of order 3×3, then $|k A|$ is equal to
(A) $\boldsymbol{k}|\mathbf{A}|$
(B) $k^{2}|\mathrm{~A}|$
(C) $\boldsymbol{k}^{3}|\mathbf{A}|$
(D) $3 \boldsymbol{k}|\mathbf{A}|$.

Sol. Let $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ be a square matrix of order 3×3.
\therefore By definition of scalar multiplication of a matrix,

$$
k \mathrm{~A}=\left[\begin{array}{lll}
k a_{11} & k a_{12} & k a_{13} \\
k a_{21} & k a_{22} & k a_{23} \\
k a_{31} & k a_{32} & k a_{33}
\end{array}\right] \quad \therefore|k \mathrm{~A}|=\left|\begin{array}{lll}
k a_{11} & k a_{12} & k a_{13} \\
k a_{21} & k a_{22} & k a_{23} \\
k a_{31} & k a_{32} & k a_{33}
\end{array}\right|
$$

Taking k common from each row,

$$
\begin{align*}
& =k^{3}\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =k^{3}|\mathrm{~A}| \tag{i}
\end{align*}
$$

Remark. In general, if A is a square matrix of order $n \times n$; then we can prove that $|\boldsymbol{k A}|=\boldsymbol{k}^{\boldsymbol{n}}|\mathbf{A}|$.
\therefore Option (C) is the correct answer.

16. Which of the following is correct:

(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these.

Sol. Option (C) is the correct answer.
i.e., Determinant is a number associated to a square matrix.

