Exercise 3.4

Using elementary transformations, find the inverse of each of the matrices, if it exists in Exercises 1 to 6.

1.
$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

We shall find A⁻¹, if it exists; by elementary (**Row**) transformations (only)

So we must write A = IA only and not A = AI

$$\begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$
(Here I is Labecause A is 2 × 2)

(Here I is I_2 because A is 2×2)

We shall reduce the matrix on left side to I2.

Here $a_{11}=1$ Operate $\mathbf{R}_2 \to \mathbf{R}_2 - 2\mathbf{R}_1$ to make $a_{21}=0$

$$\begin{bmatrix} 1 & -1 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A \\ \begin{bmatrix} R_2 \to 2 & 3 \\ 2R_1 \to 2 & -2 \\ \hline \vdots & R_2 - 2R_1 = 0 & 5 \\ R_2 \to 0 & 1 \\ 2R_1 \to 2 & 0 \\ \hline \vdots & R_2 - 2R_1 = -2 & 1 \\ \end{bmatrix}$$

Operate $R_2 \rightarrow \frac{1}{5} R_2$ to make $a_{22} = 1$

$$\therefore \qquad \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & \frac{1}{5} \end{bmatrix} A$$

Now operate $R_1 \rightarrow R_1 + R_2$ to make $a_{12} = 0$

$$\Rightarrow \begin{bmatrix} 1+0 & -1+1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1-\frac{2}{5} & 0+\frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5} \end{bmatrix} A$$

$$\Rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ (= \ I_2) = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{bmatrix} A$$

$$\therefore \text{ By definition of inverse of a matrix, A}^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} \\ \frac{-2}{5} & \frac{1}{5} \end{bmatrix}$$

Note. Any row operation done on left hand side matrix must also be done on the prefactor I_2 of right hand side matrix.

Note. Definition of inverse of a square matrix. A square matrix B is said to be inverse of a square matrix A if AB = I and BA = I. Then $B = A^{-1}$.

Remark. If the student is interested in finding A^{-1} by elementary column transformations, then he or she should start with A = AI and apply only column operations.

$$2. \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}.$$

Sol. Let
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$

We know that
$$A = I_2 A \implies \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \leftrightarrow R_2$ (to make $a_{11} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 2R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 2-2 & 1-2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1-0 & 0-2 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} A$$

Operate $R_2 \rightarrow (-1) \ R_2$ (to make a_{22} = 1)

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - R_2$ (to make $a_{12} = 0$)

$$\Rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \; (= \; \mathrm{I}_2) = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} \mathrm{A}$$

$$\therefore$$
 By definition of inverse of a square matrix, $A^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$.

$$3. \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}.$$

Sol. Let
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$$

We know that
$$A = I_2 A \implies \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Here a_{11} = 1. To make a_{21} = 0, let us operate $R_2 \rightarrow R_2 - 2R_1$.

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$$

Now $a_{22} = 1$. To make a_{12} as zero, operate $R_1 \rightarrow R_1 - 3R_2$.

$$\Rightarrow \begin{bmatrix} 1-0 & 3-3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+6 & 0-3 \\ -2 & 1 \end{bmatrix} A$$

$$\Rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \; (= I_2) = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} A$$

$$\therefore \text{ By definition, A}^{-1} = \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix}.$$
4.
$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

4.
$$\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

Sol. Set
$$A = \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix}$$

We know that
$$A = I_2 A \implies \begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Let us try to make $a_{11} = 1$. Operate $R_2 \rightarrow R_2 - 2R_1$

$$\Rightarrow \begin{bmatrix} 2 & 3 \\ 5 - 4 & 7 - 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 - 2 & 1 - 0 \end{bmatrix} A \qquad \Rightarrow \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} A$$

Now operate $R_1 \leftrightarrow R_2$ to make a_{11} = 1

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} A$$

Operate $R_2 \leftrightarrow R_2 - 2R_1$ to make $a_{21} = 0$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 2-2 & 3-2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 1+4 & 0-2 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 5 & -2 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - R_2$ to make a_{12} = 0

$$\Rightarrow \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ (= \ I_2) = \begin{bmatrix} -2-5 & 1+2 \\ 5 & -2 \end{bmatrix}$$

$$\Rightarrow \qquad \qquad \mathrm{I}_2 = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix} \mathrm{A} \ \Rightarrow \ \mathrm{A}^{-1} = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$$

Remark. In the above solution to make $a_{11} = 1$, we could also operate $R_1 o rac{1}{2} \, R_1$. But for the sake of convenience and to avoid lengthy computations, we should avoid multiplying by fractions.

5.
$$\begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix}$$

We know that $A = I_2A \Rightarrow \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}A$
Let us try to make $a_{11} = 1$. Operate $R_2 \to R_2 - 3R_1$

$$\Rightarrow \begin{bmatrix} 2 & 1 \\ 7-6 & 4-3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0-3 & 1-0 \end{bmatrix} A \Rightarrow \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - R_2$ to make $a_{11} = 1$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -3 & 1 \end{bmatrix} A$$

Now Operate $R_2 \rightarrow R_2 - R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} A$$

Now $a_{12} = 0$ and $a_{22} = 1$.

or
$$I_2 = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} A$$

By definition of inverse of a square matrix, $A^{-1} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix}$.

6.
$$\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

We know that
$$A = I_2 A \implies \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \leftrightarrow R_2$ to make $a_{11} = 1$;

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 2R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 2-2 & 5-6 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1-0 & 0-2 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} A$$

Operate $R_2 \rightarrow (-1)R_2$ to make a_{22} = 1;

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - 3R_2$ (to make $a_{12} = 0$)

$$\Rightarrow \begin{bmatrix} 1 - 0 & 3 - 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 + 3 & 1 - 6 \\ -1 & 2 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} A$$

$$\therefore \text{ By Definition, } A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}.$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} A$$

$$\therefore \text{ By Definition, A}^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix}$$

Using elementary transformations, find the inverse of each of the matrices, if it exists, in Exercises 7 to 14.

7.
$$\begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$$

We know that $A = I_2A \implies \begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}A$ Let us try to make $a_{11} = 1$.

Operate
$$R_1 \to 2R_1 \implies \begin{bmatrix} 6 & 2 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - R_2$ (to make a_{11} = 1)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 5R_1$ (to make a_{21} = 0)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 - 10 & 1 + 5 \end{bmatrix} A \qquad \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -10 & 6 \end{bmatrix} A$$

Operate
$$R_2 \rightarrow \frac{1}{2} R_2$$
 (to make $a_{22} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix} A$$

Now a_{12} has already become zero. Therefore,

$$A^{-1} = \begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}.$$

$$8. \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}.$$

Sol. Let
$$A = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$$

We know that
$$A = I_2 A \implies \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - R_2$ (to make $a_{11} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 3R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 3-3 & 4-3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0-3 & 1+3 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & 4 \end{bmatrix} A$$

Now a_{22} has already become 1.

Operate $R_1 \rightarrow R_1 - R_2$ (to make $a_{12} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 1+3 & -1-4 \\ -3 & 4 \end{bmatrix} A$$

$$\Rightarrow I_2 = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix} \text{ A. Therefore, } A^{-1} = \begin{bmatrix} 4 & -5 \\ -3 & 4 \end{bmatrix}.$$

9.
$$\begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$$

We know that $A = I_2 A \implies \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Operate $R_1 \rightarrow R_1 - R_2$ (to make a_{11} = 1)

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 2R_1$ (to make a_{21} = 0)

$$\Rightarrow \begin{bmatrix} 1 & 3 \\ 2-2 & 7-6 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0-2 & 1+2 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} A$$

Now
$$a_{22}$$
 = 1. Operate $R_1 \rightarrow R_1 - 3R_2$ (to make a_{12} = 0)

$$\Rightarrow \qquad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1+6 & -1-9 \\ -2 & 3 \end{bmatrix} A$$

$$\Rightarrow \quad I_2 = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix} A \quad \Rightarrow \quad A^{-1} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix}$$

10.
$$\begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix}$$

We know that
$$A = I_2 A \Rightarrow \begin{bmatrix} 3 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Let us try to make $a_{11} = 1$

Operate
$$R_1 \rightarrow R_1 + R_2$$
.

$$\Rightarrow \begin{bmatrix} 3-4 & -1+2 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+1 \\ 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} -1 & 1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow (-\ 1)\ R_1$

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 + 4R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -4 & -3 \end{bmatrix} A$$

Operate $R_2 \rightarrow \left(-\frac{1}{2}\right) R_2$ (to make $a_{22} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 2 & \frac{3}{2} \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1$ + R_2 (to make a_{12} = 0)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{bmatrix} A$$

.. By definition of inverse of a matrix;
$$A^{-1} = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{bmatrix}$$
.

11.
$$\begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix}$$

We know that
$$A = I_2A \Rightarrow \begin{bmatrix} 2 & -6 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}A$$

Operate $R_1 \leftrightarrow R_2$ (to make $a_{11} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & -2 \\ 2 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 2R_1$ (to make a_{21} = 0)

$$\Rightarrow \begin{bmatrix} 1 & -2 \\ 2-2 & -6+4 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1-0 & 0-2 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} A$$

Operate $R_2 \rightarrow \left(-\frac{1}{2}\right) R_2$ (to make $a_{22} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & 1 \end{bmatrix} A$$

Operate
$$R_1 \rightarrow R_1 + 2R_2$$
 (to make $a_{12} = 0$)
$$\Rightarrow \begin{bmatrix} 1+0 & -2+2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0-1 & 1+2 \\ -\frac{1}{2} & 1 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} -1 & 3 \\ 1 & 1 \end{pmatrix} A \Rightarrow A^{-1} = \begin{bmatrix} -1 \\ 1 & 1 \end{pmatrix}$$

$$\Rightarrow \begin{bmatrix} 1+0 & -2+2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0-1 & 1+2 \\ -1 & 1 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{bmatrix} A \Rightarrow A^{-1} = \begin{bmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{bmatrix}.$$
12.
$$\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}.$$
Sol. Let $A = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}.$
Here, A is a 2 × 2 matrix. So, we start with $A = I_2 A$

12.
$$\begin{bmatrix} 0 & -3 \\ -2 & 1 \end{bmatrix}$$
.

Here, A is a 2×2 matrix. So, we start with A = I_2 A

or
$$\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operating $R_1 \rightarrow$ 1/6 R_1 to make a_{11} = 1

we have
$$\begin{bmatrix} 1 & -\frac{1}{2} \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & 1 \end{bmatrix} A$$

Operating ${\rm R}_2 \rightarrow {\rm R}_2$ + $2{\rm R}_1$ to make non-diagonal entry a_{21} below a_{11} as zero,

we have
$$\begin{bmatrix} 1 & -\frac{1}{2} \\ -2+2 & 1-\frac{2}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & 0 \\ 0+\frac{2}{6} & 1+0 \end{bmatrix}$$
 A

$$\begin{bmatrix} 1 & \frac{-1}{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{6} & 0 \\ \frac{1}{2} & 1 \end{bmatrix} A$$

Here, all entries in second row of left side matrix are zero.

 \therefore A⁻¹ does not exist.

Note. If after doing one or more elementary row operations, we obtain all 0's in one or more rows of the left hand matrix A, then A⁻¹ does not exist and we say A is not invertible.

13.
$$\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

We know that
$$A = I_2 A$$
 \Rightarrow $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$

Operate $R_1 \rightarrow R_1 + R_2$ (to make $a_{11} = 1$)

$$\Rightarrow \begin{bmatrix} 2-1 & -3+2 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1+0 & 0+1 \\ 0 & 1 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$$
Operate $R_2 \to R_2 + R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 + R_1$ (to make $a_{21} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} A$$

Now $a_{22} = 1$. Operate $R_1 \rightarrow R_1 + R_2$ (to make $a_{12} = 0$)

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (= I_2) = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} A$$

$$\therefore \quad \text{By definition;} \qquad \quad A^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}.$$

14.
$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix}$$

We know that
$$A = I_2 A \implies \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow \frac{1}{2} R_1$ (to make $a_{11} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & \frac{1}{2} \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 4R_1$ (to make a_{21} = 0)

$$\Rightarrow \begin{bmatrix} 1 & \frac{1}{2} \\ 4-4 & 2-2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0-2 & 1-0 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -2 & 1 \end{bmatrix} A$$

Here one row (namely second row) of the matrix on L.H.S. contains zeros only.

Hence, A⁻¹ does not exist.

Using elementary transformations, find the inverse of each of the matrices, if it exists, in Exercises 15 to 17.

15.
$$\begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}.$$

Sol. Let
$$A = \begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$$

We know that $A = I_3A$ (we have taken I_3 because matrix A is of order 3×3)

order
$$3 \times 3$$
)
$$\begin{vmatrix}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{vmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} A$$

Let us try to make $a_{11} = 1$ Operate $R_1 \rightarrow R_1 - R_3$

$$\Rightarrow \begin{bmatrix} -1 & -1 & 1 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Operate $R_1 \rightarrow (-1) R_1$ to make $a_{11} = 1$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Operate $R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 3R_1$ (to make a_{21} = 0 and a_{31} = 0)

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 2-2 & 2-2 & 3+2 \\ 3-3 & -2-3 & 2+3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 0+2 & 1-0 & 0-2 \\ 0+3 & 0-0 & 1-3 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 5 \\ 0 & -5 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 0 & -2 \end{bmatrix} A$$

Operate $R_2 \leftrightarrow R_3$ (to make a_{22} non-zero)

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & -5 & 5 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -2 \\ 2 & 1 & -2 \end{bmatrix} A$$

Operate $R_2 \rightarrow \left(-\frac{1}{5}\right) \ R_2$ to make a_{22} = 1

$$\Rightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \\ -\frac{3}{5} & 0 & \frac{2}{5} \\ 2 & 1 & -2 \end{bmatrix} A$$

Operate $R_1 \to R_1 - R_2$ (to make $a_{12} = 0$). Here a_{32} is already zero.

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 5 \end{bmatrix} = \begin{bmatrix} -1 + \frac{3}{5} & 0 - 0 & 1 - \frac{2}{5} \\ -\frac{3}{5} & 0 & \frac{2}{5} \\ 2 & 1 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 0 & \frac{2}{5} \\ 2 & 1 & -2 \end{bmatrix}$$

Operate $R_3 \rightarrow \frac{1}{5}R_3$ (to make $a_{33} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{3}{5} & 0 & \frac{2}{5} \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \end{bmatrix} A$$

Operate ${\rm R}_2 \rightarrow {\rm R}_2$ + ${\rm R}_3$ (to make a_{23} = 0). Here a_{13} is already zero.

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (= I_3) = \begin{bmatrix} -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \end{bmatrix} A$$

$$A^{-1} = \begin{bmatrix} -\frac{2}{5} & 0 & \frac{3}{5} \\ -\frac{1}{5} & \frac{1}{5} & 0 \\ \frac{2}{5} & \frac{1}{5} & -\frac{2}{5} \end{bmatrix}.$$

16.
$$\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$
.

Sol. Let
$$A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix}$$

We know that A =

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -5 \\ 2 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Here a_{11} is already 1.

Operate $R_2 \rightarrow R_2$ + $3R_1$ and $R_3 \rightarrow R_3$ - $2R_1$ (to make α_{21} = 0and $a_{31} = 0$

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ -3+3 & 0+9 & -5-6 \\ 2-2 & 5-6 & 0+4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0+3 & 1+0 & 0+0 \\ 0-2 & 0-0 & 1-0 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -11 \\ 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -11 \\ 0 & -1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$$

Operate $R_2 \leftrightarrow R_3$ to make a_{22} simpler entry

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ 0 & -1 & 4 \\ 0 & 9 & -11 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix} A$$

Operate $R_2 \rightarrow (-1)$ R_2 to make $a_{22} = 1$

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -4 \\ 0 & 9 & -11 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & -1 \\ 3 & 1 & 0 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - 3R_2$ to make a_{12} = 0 and $R_3 \rightarrow R_3 - 9R_2$ (to make $a_{32} = 0$)

$$\Rightarrow \begin{bmatrix} 1-0 & 3-3 & -2+12 \\ 0 & 1 & -4 \\ 0 & 9-9 & -11+36 \end{bmatrix} = \begin{bmatrix} 1-6 & 0-0 & 0+3 \\ 2 & 0 & -1 \\ 3-18 & 1-0 & 0+9 \end{bmatrix} A$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 25 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ 2 & 0 & -1 \\ -15 & 1 & 9 \end{bmatrix} A$$

Operate $R_3 \rightarrow \frac{1}{25} R_3$ to make $a_{33} = 1$.

$$\Rightarrow \begin{bmatrix} 1 & 0 & 10 \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 0 & 3 \\ 2 & 0 & -1 \\ -\frac{15}{25} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1$ – $10R_3$, (to make a_{13} = 0) and $R_2 \rightarrow R_2$ + $4R_3$ (to make $a_{23} = 0$).

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (= I_3) = \begin{bmatrix} -5 + \frac{150}{25} & 0 - \frac{10}{25} & 3 - \frac{90}{25} \\ 2 - \frac{60}{25} & 0 + \frac{4}{25} & -1 + \frac{36}{25} \\ \frac{-15}{25} & \frac{1}{25} & \frac{9}{25} \end{bmatrix} A$$

$$\exists \mathbf{I}_{3} = \begin{bmatrix} 1 & \frac{-2}{5} & \frac{-3}{5} \\ \frac{-2}{5} & \frac{4}{25} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix}$$

$$\vdots \quad \text{By Definition,} \quad \mathbf{A}^{-1} = \begin{bmatrix} 1 & \frac{-2}{5} & \frac{3}{5} \\ -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix}$$

$$\vdots \quad \mathbf{E} \quad \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\exists \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\exists \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\exists \mathbf{A} \quad \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\exists \mathbf{A} \quad \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\exists \mathbf{A} \quad \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\exists \mathbf{A} \quad \mathbf{A} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

$$\therefore \text{ By Definition, } \mathbf{A}^{-1} = \begin{bmatrix} \frac{5}{5} & \frac{5}{4} & \frac{11}{25} \\ \frac{-3}{5} & \frac{1}{25} & \frac{9}{25} \end{bmatrix}$$

17.
$$\begin{bmatrix} 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$

Sol. Let
$$A = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
We know that $A = I_3$ $A \Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Let us try to make $a_{11} = 1$ Operate $R_2 \rightarrow R_2 - 2R_1$

$$\Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Operate $R_1 \leftrightarrow R_2$ (to make a_{11} = 1)

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & -1 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Operate $R_2 \rightarrow R_2 - 2R_1$ to make $a_{21} = 0$. Here a_{31} is already 0

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -5 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Operate $R_2 \leftrightarrow R_3$ (to make $a_{22} = 1$)

$$\Rightarrow \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & -2 & -5 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -2 & 0 \end{bmatrix} A$$

Operate $R_1 \rightarrow R_1 - R_2$ to make $a_{12} = 0$ and $R_3 \rightarrow R_3 + 2R_2$ to make $a_{32} = 0$.

$$\Rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & -1 \\ 0 & 0 & 1 \\ 5 & -2 & 2 \end{bmatrix} A$$

Now $a_{33} = 1$

Operate $R_1 \to R_1 + R_3$ (to make α_{13} = 0) and $R_2 \to R_2 - 3R_3$ (to

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} (= I_3) = \begin{bmatrix} -2+5 & 1-2 & -1+2 \\ 0-15 & 0+6 & 1-6 \\ 5 & -2 & 2 \end{bmatrix} A$$
or
$$I_3 = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} A$$

$$I_3 = \begin{vmatrix} -15 & 6 & -5 \\ 5 & -2 & 2 \end{vmatrix} A$$

$$\therefore \quad \text{By definition, } A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}.$$

18. Matrices A and B will be inverse of each other only if

$$(A) AB = BA$$

$$(B) AB = BA = 0$$

(C)
$$AB = 0$$
, $BA = I$

(D)
$$AB = BA = I$$
.

Sol. Option (D) *i.e.*, AB = BA = I is correct answer by definition of inverse of a square matrix.