Exercise 3.1

1. In the matrix $\mathbf{A}=\left[\begin{array}{rrrr}2 & 5 & 19 & -7 \\ 35 & -2 & 5 / 2 & 12 \\ \sqrt{3} & 1 & -5 & 17\end{array}\right]$, write
(i) The order of the matrix (ii) The number of elements
(iii) Write the elements $a_{13}, a_{21}, a_{33}, a_{24}, a_{23}$.

Sol. (i) There are 3 horizontal lines (rows) and 4 vertical lines (columns) in the given matrix A.
\therefore Order of the matrix A is $\mathbf{3 \times 4}$.
(ii) The number of elements in this matrix A is $3 \times 4=12$.
(\because The number of elements in a $m \times n$ matrix is $m . n$)
(iii) $a_{13} \Rightarrow$ Element in first row and third column $=19$
$a_{21} \Rightarrow$ Element in second row and first column $=35$
$a_{33} \Rightarrow$ Element in third row and third column $=-5$
$a_{24} \Rightarrow$ Element in second row and fourth column $=12$
$\alpha_{23} \Rightarrow$ Element in second row and third column $=\frac{5}{2}$.
2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?
Sol. We know that a matrix having $m n$ elements is of order $m \times n$.
(i) Now $24=1 \times 24,2 \times 12,3 \times 8,4 \times 6$ and hence

$$
=24 \times 1,12 \times 2,8 \times 3,6 \times 4 \text { also. }
$$

$\therefore \quad$ There are 8 possible matrices having 24 elements of orders $1 \times 24,2 \times 12,3 \times 8,4 \times 6,24 \times 1,12 \times 2,8 \times 3,6 \times 4$.
(ii) Again (prime number) $13=1 \times 13$ and 13×1 only.
\therefore There are 2 possible matrices of order 1×13 (Row matrix) and 13×1 (Column matrix)
3. If a matrix has 18 elements, what are the possible orders it can have? What if has 5 elements?

Sol. We know that a matrix having $m n$ elements is of order $m \times n$.
(i) Now $18=1 \times 18,2 \times 9,3 \times 6$ and hence $18 \times 1,9 \times 2$, 6×3 also.
\therefore There are 6 possible matrices having 18 elements of orders $1 \times 18,2 \times 9,3 \times 6,18 \times 1,9 \times 2$ and 6×3.
(ii) Again (Prime number) $5=1 \times 5$ and 5×1 only.
\therefore There are 2 possible matrices of order 1×5 and 5×1.
4. Construct a 2×2 matrix $A=\left[a_{i j}\right]$ whose elements are given by:
(i) $a_{i j}=\frac{(i+j)^{2}}{2}$
(ii) $a_{i j}=\frac{\boldsymbol{i}}{\boldsymbol{j}}$
(iii) $a_{i j}=\frac{(i+2 j)^{2}}{2}$

Sol. To construct a 2×2 matrix $\mathrm{A}=\left[a_{i j}\right]$
(i) Given: $a_{i j}=\frac{(i+j)^{2}}{2}$

In (i),

$$
\begin{align*}
& \text { Put } i=1, j=1, \quad \therefore \quad a_{11}=\frac{(1+1)^{2}}{2}=\frac{2^{2}}{2}=\frac{4}{2}=2 \\
& \text { Put } i=1, j=2, \quad \therefore \quad a_{12}=\frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2} \\
& \text { Put } i=2, j=1 ; \quad \therefore \quad a_{21}=\frac{(2+1)^{2}}{2}=\frac{9}{2} \\
& \text { Put } i=2, j=2 ; \quad \therefore \quad a_{22}=\frac{(2+2)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8 \\
& \therefore \quad \mathrm{~A}_{2 \times 2}=\left[a_{i j}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
2 & \frac{9}{2} \\
\frac{9}{2} & 8
\end{array}\right] . \tag{i}
\end{align*}
$$

(ii) Given: $a_{i j}=\frac{i}{j}$

In (i),

$$
\begin{align*}
& \text { Put } i=1, j=1, \quad \therefore \quad a_{11}=\frac{1}{1}=1 \\
& \text { Put } i=1, j=2, \quad \therefore \quad a_{12}=\frac{1}{2} \\
& \text { Put } i=2, j=1 ; \quad \therefore \quad a_{21}=\frac{2}{1}=2 \\
& \text { Put } i=2, j=2 ; \quad \therefore \quad a_{22}=\frac{2}{2}=1 \\
& \therefore \quad \mathrm{~A}_{2 \times 2}=\left[a_{i j}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
2 & \frac{1}{2} \\
2 & 1
\end{array}\right] . \tag{i}
\end{align*}
$$

(iii) Given: $a_{i j}=\frac{(i+2 j)^{2}}{2}$

In (i),

$$
\begin{aligned}
& \text { Put } i=1, j=1 ; \quad \therefore \quad a_{11}=\frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2} \\
& \text { Put } i=1, j=2 ; \quad \therefore \quad a_{12}=\frac{(1+4)^{2}}{2}=\frac{5^{2}}{2}=\frac{25}{2} \\
& \text { Put } i=2, j=1 ; \quad \therefore \quad a_{21}=\frac{(2+2)^{2}}{2}=\frac{16}{2}=8 \\
& \text { Put } i=2, j=2 ; \quad \therefore \quad a_{22}=\frac{(2+4)^{2}}{2}=\frac{6^{2}}{2}=\frac{36}{2}=18 \\
& \therefore \quad \mathrm{~A}_{2 \times 2}=\left[a_{i j}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
\frac{9}{2} & \frac{25}{2} \\
8 & 18
\end{array}\right] .
\end{aligned}
$$

5. Construct a 3×4 matrix, whose elements are given by:

$$
\begin{array}{ll}
\text { (i) } \left.a_{i j}=\frac{1}{2} \right\rvert\,-3 i+j \text { । } & \text { (ii) } a_{i j}=2 i-j
\end{array}
$$

Sol. (i) To construct a 3×4 matrix say A.

$$
\begin{equation*}
\text { Given: } a_{i j}=\frac{1}{2}|-3 i+j| \tag{i}
\end{equation*}
$$

In (i),
Put $i=1, j=1$,

$$
\begin{array}{rlrl}
& \therefore \quad a_{11} & =\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=\frac{1}{2}(2)=1 \\
\text { Put } i & =1, j=2, \\
& \therefore \quad a_{12} & =\frac{1}{2}|-3+2|=\frac{1}{2}|-1|=\frac{1}{2}(1)=\frac{1}{2} \\
i & =1, j=3, \\
& \therefore \quad a_{13} & =\frac{1}{2}|-3+3|=\frac{1}{2}|0|=\frac{1}{2}(0)=0 \\
i & =1, j=4, \\
& & a_{14} & =\frac{1}{2}|-3+4|=\frac{1}{2}|1|=\frac{1}{2}(1)=\frac{1}{2} \\
& & i & =2, j=1, \\
& & a_{21} & =\frac{1}{2}|-6+1|=\frac{1}{2}|-5|=\frac{5}{2} \\
& & i & =2, j=2, \\
& & a_{22} & =\frac{1}{2}|-6+2|=\frac{1}{2}|-4|=\frac{4}{2}=2 \\
& & & =2, j=3, \\
& & a_{23} & =\frac{1}{2}|-6+3|=\frac{1}{2}|-3|=\frac{3}{2} \\
& & i & =2, j=4, \\
& & a_{24} & =\frac{1}{2}|-6+4|=\frac{1}{2}|-2|=\frac{2}{2}=1
\end{array}
$$

$$
\begin{aligned}
& i=3, j=1, \\
& \therefore \quad a_{31}=\frac{1}{2}|-9+1|=\frac{1}{2}|-8|=\frac{8}{2}=4 \\
& i=3, j=2 \text {, } \\
& \therefore \quad a_{32}=\frac{1}{2}|-9+2|=\frac{1}{2}|-7|=\frac{7}{2} \\
& i=3, j=3 \text {, } \\
& \therefore \quad a_{33}=\frac{1}{2}|-9+3|=\frac{1}{2}|-6|=\frac{6}{2}=3 \\
& i=3, j=4 \text {, } \\
& \therefore \quad a_{34}=\frac{1}{2}|-9+4|=\frac{1}{2}|-5|=\frac{5}{2} \\
& \therefore \quad \mathrm{~A}_{3 \times 4}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{cccc}
1 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{5}{2} & 2 & \frac{3}{2} & 1 \\
4 & \frac{7}{2} & 3 & \frac{5}{2}
\end{array}\right] .
\end{aligned}
$$

(ii) Given: $a_{i j}=2 i-j$

$$
\begin{array}{ll}
\therefore \quad a_{11}=2-1=1, & a_{12}=2-2=0 \\
a_{13}=2-3=-1, & a_{14}=2-4=-2 \\
a_{21}=4-1=3, & a_{22}=4-2=2 \\
a_{23}=4-3=1, & a_{24}=4-4=0 \\
a_{31}=6-1=5, & a_{32}=6-2=4 \\
a_{33}=6-3=3, & a_{34}=6-4=2 \\
\therefore & A_{3 \times 4}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & -1 & -2 \\
3 & 2 & 1 & 0 \\
5 & 4 & 3 & 2
\end{array}\right] .
\end{array}
$$

6. Find the values of x, y and z from the following equations:
(i) $\left[\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right]=\left[\begin{array}{ll}\boldsymbol{y} & \boldsymbol{z} \\ 1 & 5\end{array}\right]$
(ii) $\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$
(iii) $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$

Sol.
(i) Given: $\left[\begin{array}{ll}4 & 3 \\ x & 5\end{array}\right]=\left[\begin{array}{ll}y & z \\ 1 & 5\end{array}\right]$

By definition of Equal matrices, equating corresponding entries, we have $4=y, 3=z, x=1,5=5$
$\therefore \quad x=1, y=4, z=3$.
(ii) Given: $\left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]=\left[\begin{array}{ll}6 & 2 \\ 5 & 8\end{array}\right]$

Equating corresponding entries, we have

$$
\begin{align*}
x+y & =6 \tag{i}\\
5+z & =5 \quad \text { i.e., } \quad z=5-5=0 \\
x y & =8 \tag{ii}
\end{align*}
$$

and
Let us solve (i) and (ii) for x and y.
From (i), $y=6-x$
Putting this value of y in (ii), we have

$$
x(6-x)=8 \quad \text { or } \quad 6 x-x^{2}=8
$$

or $\quad-x^{2}+6 x-8=0 \quad$ or $\quad x^{2}-6 x+8=0$
or $\quad x^{2}-4 x-2 x+8=0 \quad$ or $\quad x(x-4)-2(x-4)=0$
or $\quad(x-4)(x-2)=0$
\therefore Either $\quad x-4=0$ or $x-2=0$
i.e., $x=4$ or $\quad x=2$.

When $x=4$, then $\quad y=6-x=6-4=2$
$\therefore \quad x=4, y=2, z=0$.
When $x=2$, then $\quad y=6-x=6-2=4$
$\therefore \quad x=2, y=4, \quad z=0$.
(iii) Given: $\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$

Equating corresponding entries, we have

$$
\begin{array}{r}
x+y+z=9 \\
x+z=5 \\
y+z=7 \tag{iiii}
\end{array}
$$

Eqn. (i) - eqn. (ii) gives $y=9-5=4$
Eqn. (i) - eqn. (iii) gives $x=9-7=2$
Putting $x=2$ and $y=4$ in (i), $2+4+z=9$
or

$$
6+z=9
$$

$\therefore \quad<\quad z=3$
Hence $\quad x=2, y=4, z=3$.
7. Find the values of a, b, c and d from the equation

$$
\left[\begin{array}{cc}
a-b & 2 a+c \\
2 a-b & 3 c+d
\end{array}\right]=\left[\begin{array}{rr}
-1 & 5 \\
0 & 13
\end{array}\right]
$$

Sol. Equating corresponding entries of given equal matrices, we have

$$
\begin{align*}
a-b & =-1 \tag{i}\\
2 a-b & =0 \tag{ii}\\
2 a+c & =5 \tag{iiii}\\
3 c+d & =13 \tag{iv}
\end{align*}
$$

and
Eqn. (i) - eqn. (ii) gives $-a=-1$ or $a=1$
Putting $a=1$ in (i), $1-b=-1$ or $-b=-2$ or $b=2$
Putting $a=1$ in (iii), $2+c=5 \quad \Rightarrow \quad c=5-2=3$
Putting $c=3$ in (iv), $9+d=13$ or $d=13-9=4$
$\therefore \quad a=1, b=2, c=3, d=4$.
8. $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ is a square matrix, if
(A) $m<n$
(B) $m>n$
(C) $m=n$
(D) None of these.

Sol. (C) is the correct option.
$(\because$ By definition of square matrix $m=n)$
9. Which of the given values of x and y make the following pair of matrices equal

$$
\left[\begin{array}{cc}
3 x+7 & 5 \\
y+1 & 2-3 x
\end{array}\right],\left[\begin{array}{cc}
0 & y-2 \\
8 & 4
\end{array}\right]
$$

(A) $x=\frac{-1}{3}, y=7$
(B) Not possible to find
(C) $y=7, x=\frac{-2}{3}$
(D) $x=\frac{-1}{3}, y=\frac{-2}{3}$.

Sol. According to given, matrix $\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]=$ matrix $\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$ Equating corresponding entries, we have

$$
\begin{array}{ccc}
3 x+7=0 & \Rightarrow & 3 x=-7 \\
5=y-2 & \Rightarrow & 5+2=y \\
y+1=8 & \Rightarrow & y=8-1=7
\end{array} \quad \begin{gathered}
x=-\frac{7}{3} \tag{ii}\\
\text { and } 2-3 x=4=7
\end{gathered} \quad \Rightarrow \quad-3 x=2 \quad \Rightarrow \quad x=-\frac{2}{3}
$$

The two values of $x=-\frac{7}{3}$ given by (i) and $x=-\frac{2}{3}$ given by (ii) are not equal.
$\therefore \quad$ No values of x and y exist to make the two matrices equal.
\therefore Option (B) is the correct answer.
10. The number of all possible matrices of order 3×3 with each entry 0 or 1 is:
(A) 27
(B) 18
(C) 81
(D) 512.

Sol. We know that general matrix of order 3×3 is

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

This matrix has $3 \times 3=9$ elements.
The number of choices for a_{11} is 2 (as 0 or 1 can be used)
Similarly, the number of choices for each other element is 2 .
Hence, total possible arrangements (matrices)

$$
\begin{aligned}
& =\frac{2 \times 2 \times \ldots \times 2}{9 \text { times }} \quad \text { (By fundamental principle of counting) } \\
& =2^{9}=512
\end{aligned}
$$

\therefore Option (D) is the correct answer.

