Question 1: Let f: $\{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and g: $\{1, 2, 5\} \rightarrow \{1, 3\}$ be given by f = $\{(1, 2), (3, 5), (4, 1)\}$ and g = $\{(1, 3), (2, 3), (5, 1)\}$. Write down gof.

ACK BHR

Solution: The functions f: $\{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and g: $\{1, 2, 5\} \rightarrow \{1, 3\}$ are

 $f = \{(1, 2), (3, 5), (4, 1)\} \text{ and } g = \{(1, 3), (2, 3), (5, 1)\}.$ $gof (1) = g[f(1)] = g(2) = 3 \qquad [as f(1) = 2 \text{ and } g(2) = 3]$ $gof (3) = g[f(3)] = g(5) = 1 \qquad [as f(3) = 5 \text{ and } g(5) = 1]$ $gof (4) = g[f(4)] = g(1) = 3 \qquad [as f(4) = 1 \text{ and } g(1) = 3]$ $\therefore gof = \{(1, 3), (3, 1), (4, 3)\}$

Question 2: Let f, g and h be functions from R to R. Show that

(f + g)oh = foh + goh

(f.g)oh = (foh).(goh)

Solution: To prove: (f + g)oh = foh + goh

LHS = [(f + g)oh](x)

$$= (f + g)[h(x)] = f[h(x)] + g[h(x)]$$

= (foh)(x) + (goh)(x)

$$= {(foh)(x) + (goh)}(x) = RHS$$

$$\therefore \{(f + g)oh\}(x) = \{(foh)(x) + (goh)\}(x) \text{ for all } x \in \mathbb{R}$$

Hence, (f+g)oh = foh + goh

To Prove: (f.g)oh = (foh).(goh)

LHS = [(f.g)oh](x)

= (f.g)[h(x)] = f[h(x)] . g[h(x)]

= (foh)(x) . (goh)(x)

= {(foh).(goh)}(x) = RHS

 $\therefore [(f.g)oh](x) = \{(foh).(goh)\}(x) \text{ for all } x \in \mathbb{R}$

Hence, (f.g)oh = (foh).(goh)

Question 3: Find gof and fog, if

(i) (x) = |x| and (x) = |5x - 2|(ii) $(x) = 8x^{3}$ and $(x) = x^{\frac{1}{3}}$ **Solution:** (i) f(x) = |x| and g(x) = |5x-2| \therefore go f(x) = g(f(x)) = g(|x|) = |5|x|-2|fog(x) = f(g(x)) = f(|5x-2|) = ||5x-2|| = |5x-2|(ii) $f(x) = 8x^{3}$ and $g(x) = x^{\frac{1}{3}}$ \therefore go $f(x) = g(f(x)) = g(8x^{3}) = (8X^{3})^{\frac{1}{3}} = 2x$ fog $(x) = f(g(x)) = f(x^{\frac{1}{3}})^{3} = 8(x^{\frac{1}{3}})^{3} = 8x$

Question 4: If (x) = (4x+3)(6x-4), $x \neq \frac{2}{3}$, show that fof(x) = x, for all $x \neq \frac{2}{3}$. What is the inverse of f?

Solution: It is given that $f(x) = \frac{4x+3}{6x-4}$, $x \neq 3$ $(fof)(x) = f(f(x)) = f(\frac{4x+3}{6x-4}) = \frac{4(\frac{4x+3}{6x-4})+3}{6(\frac{4x+3}{6x-4})-4}$

$$\frac{16x+12+18x-12}{24x+18-24s+16} = \frac{34x}{34}$$

∴fof(x) = x, for all x $\neq \frac{2}{3}$.

$$\Rightarrow$$
 fof = I_x

the given function f is invertible and the inverse of f is f itself.

Question 5: State with reason whether following functions have inverse

(i) f: $\{1, 2, 3, 4\} \rightarrow \{10\}$ with

 $f = \{(1, 10), (2, 10), (3, 10), (4, 10)\}$

(ii) g: $\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ with

g = {(5, 4), (6, 3), (7, 4), (8, 2)}

(iii) h: $\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ with

h = {(2, 7), (3, 9), (4, 11), (5, 13)}

Solution: (i) f: $\{1, 2, 3, 4\} \rightarrow \{10\}$ defined as f = $\{(1, 10), (2, 10), (3, 10), (4, 10)\}$

f is a many one function as

f(1) = f(2) = f(3) = f(4) = 10

∴f is not one – one.

function f does not have an inverse.

(ii) g: $\{5, 6, 7, 8\} \rightarrow \{1, 2, 3, 4\}$ defined as

 $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$

g is a many one function as g(5) = g(7) = 4.

 \therefore g is not one – one.

g does not have an inverse.

(iii) h: $\{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ defined as

h = {(2, 7), (3, 9), (4, 11), (5, 13)}

all distinct elements of the set {2, 3, 4, 5} have distinct images under h.

 \therefore Function h is one – one.

h is onto since for every element y of the set $\{7, 9, 11, 13\}$, there exists an element x in the set $\{2, 3, 4, 5\}$, such that h(x) = y.

ICH aWA

h is a one – one and onto function.

h has an inverse.

Question 6: Show that f: $[-1, 1] \rightarrow R$, given by(x) = X(X+2) is one – one. Find the inverse of the function f: $[-1, 1] \rightarrow$ Range f.

(Hint: For $y \in \text{Range f}$, y = (x) = (X+2)), for some x in [-1, 1], i.e., x = 2y(1-y))

Solution: f: $[-1, 1] \rightarrow R$ is given as (x) = X(X+2)

For one – one

f(x) = f(y)

 \Rightarrow (*X*+2) = (*Y*+2)

 \Rightarrow xy +2x = xy +2y

 $\Rightarrow 2x = 2y$

$$\Rightarrow$$
 x = y

 \therefore f is a one – one function.

f: $[-1, 1] \rightarrow$ Range f is onto.

: f: $[-1, 1] \rightarrow$ Range f is one – one and onto and therefore, the inverse of the function f: $[-1, 1] \rightarrow$ Range f exists. 00451

g: Range f \rightarrow [-1, 1] be the inverse of f.

ametenth y be an arbitrary element of range f.

Since f: $[-1, 1] \rightarrow \text{Range f is onto}$,

y = f(x) for some $x \in [-1, 1]$

$$\Rightarrow y = \frac{x}{(x+2)}$$
$$\Rightarrow xy + 2y = x$$
$$\Rightarrow x(1-y) = 2y$$

$$\Rightarrow x - \frac{2y}{1 - y}, y \neq 1$$

define g: Range f \rightarrow [-1, 1] as

$$g(y) = \frac{2y}{1-y}, y \neq 1$$

$$(gof)(x) = g(f(x)) = g(\frac{x}{(x+2)}) = 2(\frac{2(\frac{x}{x+2})}{1-(\frac{x}{x+2})}) = \frac{2x}{x+2-x} = \frac{2x}{2} = x$$

and

$$(fog)(y) = f(g(y)) = f(\frac{2y}{1-y}) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} =$$

$$\therefore gof = \mathbf{x} = \mathbf{I}_{[-1,1]} \text{ and fog = y = I}_{Range f}$$

 $\therefore f^{\scriptscriptstyle -1} \, \texttt{=} \, \texttt{g}$

$$\Rightarrow f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$$

Question 7: Consider f: $R \rightarrow R$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

all all

Same text **Solution:** f: $R \rightarrow R$ is given by, f(x) = 4x + 3

For one – one

f(x) = f(y)

 \Rightarrow 4x + 3 = 4y + 3

$$\Rightarrow$$
 4x = 4y

$$\Rightarrow$$
 x = y

 \therefore f is a one – one function

For onto

 $y \in R$, let y = 4x + 3.

$$\Rightarrow x = \frac{y-3}{4} \in R$$

y - 3

for any $y \in R$, there exists $x = 4 \in R$, such that

$$f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y$$

∴ f is onto.

f is one – one and onto and therefore, f^{-1} exists.

define g: R
$$\rightarrow$$
 R by g(x) = $\frac{y-3}{4}$

$$(gof)(x) = g(f(x)) = g(4x + 3) = \frac{(4x+3)-3}{4} = \frac{4x}{4} = x$$

and

$$(fog)(y) = f(g(y)) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y-3 + 3 = y$$

$$\therefore \text{ gof = fog = } I_{R}$$

f is invertible and the inverse of f is given by $f^{-1}(y) = g(y) =$

Question 8: Consider f: $\mathbf{R} \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f-1 of given f by $f^{-1}(y) = \sqrt{Y-4}$, where \mathbf{R} is the set of all non-negative real numbers.

2

Solution: f: $\mathbf{R}_+ \rightarrow [4, \infty)$ is given as $f(x) = x^2 + 4$.

For one – one

f(x) = f(y)

 \Rightarrow x² + 4 = y² + 4

 $\Rightarrow x^2 = y^2$

 \Rightarrow x = y [as x = y $\in \mathbf{R}_+$]

 \therefore f is a one – one function.

For onto

$$y \in [4, \infty)$$
, let $y = x^2 + 4$
 $\Rightarrow x^2 = y - 4 \ge 0$ [as $y \ge 4$]
 $\Rightarrow x = \sqrt{Y - 4} \ge 0$

for any $y \in [4, \infty)$, there exists $x = \sqrt{Y - 4} \in R_+$, such that

$$f(x) = f(\sqrt{Y-4}) = (\sqrt{Y-4})^2 + 4 = y - 4 + 4 = y$$

 \therefore f is onto.

f is one – one and onto and therefore, f $^{-1}$ exists.

Let us define g: [4, ∞) \rightarrow R+ by g(y) = $\sqrt{Y-4}$

$$(gof)(x) = g(f(x)) = g(x^2 + 4) = v(x^2 + 4) - 4 = v\sqrt{X^2} = x$$

and

$$(fog)(y) = f(g(y)) = f(\sqrt{Y-4}) = (\sqrt{Y-4})^2 + 4 = y - 4 + 4 = y$$

 \therefore gof = fog = I_R

f is invertible and the inverse of f is given by $f^{-1}(y) = g(y) = \sqrt{Y-4}$

Question 9: Consider f: $\mathbf{R}_+ \rightarrow [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that f is invertible with f-1(y) = 0

2

$$\left(\frac{\left(\sqrt{y+6}\right)-1}{3}\right)$$

Solution: f: $R_+ \rightarrow [-5, \infty)$ is given as $f(x) = 9x^2 + 6x - 5$.

y be an arbitrary element of $[-5, \infty)$.

$$y = 9x^2 + 6x - 5$$

 \Rightarrow y = (3x + 1)² -1-5 = (3x + 1)² -6

 \Rightarrow y + 6 = (3x + 1)²

 $\Rightarrow 3x + 1 = \sqrt{Y + 6} \qquad [as \ y \ge -5 \Rightarrow y + 6 > 0]$

$$\Rightarrow \mathbf{x} = \left(\frac{\left(\sqrt{\mathbf{y}+\mathbf{6}}\right)-1}{3}\right)$$

∴ f is onto, range f = $[-5, \infty)$.

$$= \left(\frac{\left(\sqrt{y+6}\right)-1}{3}\right)$$

define g: $[-5, \infty) \rightarrow R+as g(y)$

 $(gof)(x) = g(f(x)) = g(9x^{2} + 6x-5) = g((3x + 1)^{2}-6)$

$$= \sqrt{(3x+1)^2 - 6 + 6} - 1$$
$$= \frac{3x+1-1}{3} = \frac{3x}{3} = X$$

and

=

3

$$(fog)(y) = f(g(y)) = \left(\frac{\sqrt{Y+6}-1}{3}\right) = \left[3\left(\frac{\sqrt{Y+6}-1}{3}\right)+1^2\right]$$

$$= \left(\sqrt{Y+6}\right)^2 - 6 = +6 - 6 = y$$

$$\therefore$$
 gof = x = I_R and fog = y = l_{Range}

f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \left(\frac{\sqrt{Y+6}}{3}\right)$$

Question 10: Let f: $X \rightarrow Y$ be an invertible function. Show that f has unique inverse.

(Hint: suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $fog_1(y) = I_Y(y) = fog_2(y)$. Use one – one ness of f).

ACH. BW

Solution: Let $f: X \rightarrow Y$ be an invertible function.

```
suppose f has two inverses (g_1 \text{ and } g_2)
```

for all $y \in Y$,

 $fog1(y) = I_{Y}(y) = fog2(y)$ \Rightarrow f(g₁ (y)) = f(g₂ (y)) \Rightarrow g₁ (y) = g₂ (y)

[as f is invertible \Rightarrow f is one – one]

[as g is one – one] $\Rightarrow g_1 = g_2$

f has a unique inverse.

Question 11: Consider f: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f.$

Solution: Function f: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ is given by f(1) = a, f(2) = b, and f(3) = c

If we define g: $\{a, b, c\} \rightarrow \{1, 2, 3\}$ as g(a) = 1, g(b) = 2, g(c) = 3.

We have

(fog)(a) = f(g(a)) = f(1) = a

(fog)(b) = f(g(b)) = f(2) = b

(fog)(c) = f(g(c)) = f(3) = c

and

$$(gof)(1) = g(f(1)) = f(a) = 1$$

(gof)(2) = g(f(2)) = f(b) = 2

(gof)(3) = g(f(3)) = f(c) = 3

 \therefore gof = I_x and fog = I_y, where X = {1, 2, 3} and Y= {a, b, c}.

inverse of f exists and f-1 = g.

:: f^{-1} :{ a, b, c} \rightarrow {1, 2, 3} is given by f^{-1} (a) = 1, f^{-1} (b) = 2, f^{-1} (c) = 3

If we define h: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ as h (1) = a, h (2) = b, h (3) = c

(goh)(1) = g(h(1)) = g(a) = 1

(goh)(2) = g(h(2)) = g(b) = 2

(goh)(3) = g(h(3)) = g(c) = 3

and

(hog)(a) = h(g(a)) = h(1) = a(hog)(b) = h(g(b)) = h(2) = b(hog)(c) = h(g(c)) = h(3) = c: goh = I_X and hog = I_Y , where X = {1, 2, 3} and Y = {a, b, c}. the inverse of g exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$. h = f.

Hence, $(f^{-1})^{-1} = f$

Question 12: Let f: X \rightarrow Y be an invertible function. Show that the inverse of f⁻¹ is f, CK awa

i.e., (f⁻¹)⁻¹ = f.

Solution: Let $f: X \rightarrow Y$ be an invertible function.

there exists a function g: $Y \rightarrow X$ such that gof = I_X and fog = I_Y .

 $f^{-1} = g.$

 $gof = I_x$ and $fog = I_y$

 \Rightarrow f⁻¹ of = I_X and fof-1 = I_Y

 $f^{-1}: Y \rightarrow X$ is invertible and f is the inverse of f^{-1} i.e., $(f^{-1})^{-1} = f$

Question 13: If f: $R \rightarrow R$ be given by $(x) = (3-x^3)^3$, then fof (x) is

(A)
$$\frac{1}{x^3}$$

- (B) x³
- (C) X

(D) $(3 - x^3)$

Solution: f: $R \rightarrow R$ as f(x) = $(3-x^3)^{\overline{3}}$

$$\therefore \text{ fof}(x) = f(f(x)) = f(3-x^3)^{\frac{1}{3}} = [3-((3-x^3)^{\frac{1}{3}})^3]^{\frac{1}{3}}$$
$$= [3-(3-x^3)]^{\frac{1}{3}} = (x^3)^{\frac{1}{3}}$$
$$\therefore \text{ fof}(x) = x$$

The correct answer is C.

Question 14: : Let f: R- {- $\frac{4}{3}$ } \rightarrow R be a function as f(x) = $\frac{4x}{3x+4}$. The inverse of f is map g: Range f \rightarrow R- {- $\frac{4}{3}$ } given by ACK BWE (A) g(y) = $\frac{3y}{3-4y}$ (B) g(y) = $\frac{4y}{4-3y}$ (C) g(y) = $\frac{4y}{4-3y}$ (D) g(y) = $\frac{3y}{4-3y}$ 4x**Solution:** $f: \mathbf{R} - \{-3\} \rightarrow \mathbf{R}$ be a function as f(x) = 3x + 4y be an arbitrary element of Range f. there exists $x \in \mathbb{R} - \{-3\}$ such that y = f(x) \Rightarrow y = $\frac{4x}{3x+4}$ \Rightarrow 3xy + 4y = 4x

⇒ x (4-3y) = 4y

$$\Rightarrow \mathbf{x} = \frac{4y}{4-3y}$$

define g: Range f \rightarrow R- {- $\frac{4}{3}$ } as g(y) = $\frac{4y}{4-3y}$

$$(\frac{4x}{3x+4}) = \frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)}$$

gof(x) = g(f(x)) = g

$$\frac{16x}{a^{-1}2x+16-12x} = \frac{16x}{16} = x$$

and
$$(\frac{4y}{4-3y}) = \frac{4\left(\frac{4y}{4-3y}\right)}{3\left(\frac{4y}{4-3y}\right)+4}$$
$$fo(y) = f(g(y)) = f$$
$$= \frac{16y}{12y+16-12x} = \frac{16y}{16} = y$$
$$\therefore \text{ gof } = \frac{I_{R} \cdot \left\{\frac{4}{3}\right\}}{16} \text{ and fog } = I_{Range f}$$
g is the inverse of f i.e., f - 1 = g.
the inverse of f is the map g: Range f $\rightarrow R$.
$$\left\{-\frac{4}{3}\right\}, \text{ which is given by g(y) } = \frac{4y}{4-3y}.$$
The correct answer is B.