Question 1: Let $\mathrm{f}:\{1,3,4\} \rightarrow\{1,2,5\}$ and $\mathrm{g}:\{1,2,5\} \rightarrow\{1,3\}$ be given by $\mathrm{f}=\{(1,2),(3,5),(4,1)\}$ and $\mathrm{g}=$ $\{(1,3),(2,3),(5,1)\}$. Write down gof.

Solution: The functions f: $\{1,3,4\} \rightarrow\{1,2,5\}$ and $\mathrm{g}:\{1,2,5\} \rightarrow\{1,3\}$ are
$f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$.
$\begin{array}{lc}\text { gof }(1)=g[f(1)]=g(2)=3 & {[\operatorname{as} f(1)=2 \text { and } g(2)=3]} \\ \operatorname{gof}(3)=g[f(3)]=g(5)=1 & {[\text { as } f(3)=5 \text { and } g(5)=1]} \\ \operatorname{gof}(4)=g[f(4)]=g(1)=3 & {[\operatorname{as~} f(4)=1 \text { and } g(1)=3]} \\ \therefore \operatorname{gof}=\{(1,3),(3,1),(4,3)\} & \end{array}$

Question 2: Let f, g and h be functions from \mathbf{R} to R. Show that
($\mathrm{f}+\mathrm{g}$) oh $=$ foh + goh
(f.g)oh = (foh).(goh)

Solution: To prove: $(\mathrm{f}+\mathrm{g})$ oh $=\mathrm{foh}+\mathrm{goh}$

```
LHS = [(f + g)oh](x)
= (f+g)[h(x)]= f[h(x)]+g[h(x)]
=(foh)(x) + (goh)(x)
= {(foh)(x) + (goh)}(x)= RHS
\therefore{(f+g)oh}(x)={(foh)(x)+(goh)}(x) for all }\textrm{x}\in\textrm{R
Hence, (f+g)oh = foh + goh
To Prove: (f.g)oh = (foh).(goh)
LHS = [(f.g)oh](x)
= (f.g)[h(x)]=f[h(x)].g[h(x)]
= (foh)(x). (goh)(x)
={(foh).(goh)}(x)= RHS
\therefore[(f.g)oh](x) ={(foh).(goh)}(x) for all x }\in\textrm{R
Hence, (f.g)oh = (foh).(goh)
```

Question 3: Find $g o f$ and $f o g$, if
(i) $(x)=|x|$ and $(x)=|5 x-2|$
(ii) $(x)=8 x^{3}$ and $(x)=x^{\frac{1}{3}}$

Solution: (i) $f(x)=|x|$ and $g(x)=|5 x-2|$
$\therefore g o f(x)=g(f(x))=g(|x|)=|5| x|-2|$
$f o g(x)=f(g(x))=f(|5 x-2|)=||5 x-2||=|5 x-2|$
(ii) $f(x)=8 x^{3}$ and $g(x)=x^{\frac{1}{3}}$
$\therefore \operatorname{gof}(x)=g(f(x))=g\left(8 x^{3}\right)=\left(8 X^{3}\right)^{\frac{1}{3}}=2 x$
$f \circ g(x)=f(g(x))=f\left(x^{\frac{1}{3}}\right)^{3}=8\left(x^{\frac{1}{3}}\right)^{3}=8 x$

Question 4: If $(x)=(4 x+3)(6 x-4), x \neq \frac{2}{3}$, show that fof $(x)=x$, for all $x \neq \frac{2}{3}$. What is the inverse of f ?
Solution: It is given that $f(x)=\frac{(4 x+3)}{(6 x-4)}, x \neq \frac{2}{3}$
$(f \circ f)(x)=f(f(x))=f\left(\frac{(4 x+3)}{(6 x-4)}=\frac{4\left(\frac{4 x+3}{6 x-4}\right)+3}{6\left(\frac{4 x+3}{6 x-4}\right)-4}\right.$
$=\frac{16 x+12+18 x-12}{24 x+18-24 s+16}=\frac{34 x}{34}$
$\therefore f \circ f(x)=x$, for all $x \neq \frac{2}{3}$.
\Rightarrow fof $=I_{x}$
the given function f is invertible and the inverse of f is f itself.

Question 5: State with reason whether following functions have inverse
(i) $f:\{1,2,3,4\} \rightarrow\{10\}$ with

$$
f=\{(1,10),(2,10),(3,10),(4,10)\}
$$

(ii) $\mathrm{g}:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ with

$$
g=\{(5,4),(6,3),(7,4),(8,2)\}
$$

(iii) h: $\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ with

$$
h=\{(2,7),(3,9),(4,11),(5,13)\}
$$

Solution: (i) $\mathrm{f}:\{1,2,3,4\} \rightarrow\{10\}$ defined as $f=\{(1,10),(2,10),(3,10),(4,10)\}$
f is a many one function as
$f(1)=f(2)=f(3)=f(4)=10$
$\therefore f$ is not one - one.
function f does not have an inverse.
(ii) $\mathrm{g}:\{5,6,7,8\} \rightarrow\{1,2,3,4\}$ defined as

$$
g=\{(5,4),(6,3),(7,4),(8,2)\}
$$

g is a many one function as $g(5)=g(7)=4$.
$\therefore \mathrm{g}$ is not one - one.
g does not have an inverse.
(iii) h: $\{2,3,4,5\} \rightarrow\{7,9,11,13\}$ defined as
$h=\{(2,7),(3,9),(4,11),(5,13)\}$
all distinct elements of the set $\{2,3,4,5\}$ have distinct images under h.
\therefore Function h is one - one.
h is onto since for every element y of the set $\{7,9,11,13\}$, there exists an element x in the set $\{2,3,4$, $5\}$, such that $h(x)=y$.
h is a one - one and onto function.
h has an inverse.

Question 6: Show that $\mathrm{f}:[-1,1] \rightarrow \mathrm{R}$, given $\mathrm{by}(x)=X(X+2)$ is one - one. Find the inverse of the function f: $[-1,1] \rightarrow$ Range f.
(Hint: For $\mathrm{y} \in$ Range $\mathrm{f}, \mathrm{y}=(x)=(X+2)$), for some x in $[-1,1]$, i.e., $x=2 y(1-y)$)
Solution: $\mathrm{f}:[-1,1] \rightarrow \mathrm{R}$ is given as $(x)=X(X+2)$
For one - one
$f(x)=f(y)$
$\Rightarrow(X+2)=(Y+2)$
$\Rightarrow x y+2 x=x y+2 y$
$\Rightarrow 2 x=2 y$
$\Rightarrow x=y$
$\therefore \mathrm{f}$ is a one - one function.
$\mathrm{f}:[-1,1] \rightarrow$ Range f is onto.
$\therefore \mathrm{f}:[-1,1] \rightarrow$ Range f is one - one and onto and therefore, the inverse of the function $\mathrm{f}:[-1,1] \rightarrow$ Range f exists.
g : Range $f \rightarrow[-1,1]$ be the inverse of f.
y be an arbitrary element of range f.

Since $\mathrm{f}:[-1,1] \rightarrow$ Range f is onto,
$y=f(x)$ for some $x \in[-1,1]$
$\Rightarrow y=\frac{x}{(x+2)}$
$\Rightarrow x y+2 y=x$
$\Rightarrow x(1-y)=2 y$
$\Rightarrow x-\frac{2 y}{1-y}, y \neq 1$
define g : Range $f \rightarrow[-1,1]$ as
$g(y)=\frac{2 y}{1-y}, y \neq 1$
$(g \circ f)(x)=g(f(x))=g\left(\frac{x}{(x+2)}\right)=2\left(\frac{2\left(\frac{x}{x+2}\right)}{1-\left(\frac{x}{x+2}\right)}\right)=\frac{2 x}{x+2-x}=\frac{2 x}{2}=\mathrm{x}$
and
$(f \circ g)(y)=f(g(y))=f\left(\frac{2 y}{1-y}\right)=\frac{\frac{2 y}{1-y}}{\frac{2 y}{1-y}+2}=\frac{2 y}{2 y+2-2 y}=\frac{2 y}{2}=$
$\therefore g o f=\mathrm{x}=\mathrm{I}_{[-1,1]}$ and fog $=\mathrm{y}=\mathrm{I}_{\text {Range } \mathrm{f}}$
$\therefore f^{-1}=\mathrm{g}$
$\Rightarrow f^{-1}(y)=\frac{2 y}{1-y}, y \neq 1$

Question 7: Consider $f: R \rightarrow R$ given by $f(x)=4 x+3$. Show that f is invertible. Find the inverse of f.
Solution: $f: R \rightarrow R$ is given by, $f(x)=4 x+3$
For one - one
$f(x)=f(y)$
$\Rightarrow 4 \mathrm{x}+3=4 \mathrm{y}+3$
$\Rightarrow 4 \mathrm{x}=4 \mathrm{y}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
$\therefore \mathrm{f}$ is a one - one function
For onto
$y \in R$, let $y=4 x+3$.
$\Rightarrow \mathrm{x}=\frac{\frac{y-3}{4}}{4} \in \mathrm{R}$
for any $\mathrm{y} \in \mathrm{R}$, there exists $\mathrm{x}=\frac{\frac{y-3}{4}}{\in} \in \mathrm{R}$, such that
$f(x)=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y$.
$\therefore \mathrm{f}$ is onto.
f is one - one and onto and therefore, f^{-1} exists.
define $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ by $\mathrm{g}(\mathrm{x})=\frac{\frac{y-3}{4}}{4}$
$(g \circ f)(x)=g(f(x))=g(4 x+3)=\frac{(4 x+3)-3}{4}=\frac{4 x}{4}=x$
and
$(f \circ g)(y)=f(g(y))=f\left(\frac{y-3}{4}\right)=4\left(\frac{y-3}{4}\right)+3=y-3+3=y$
$\therefore \mathrm{gof}=\mathrm{fog}=\mathrm{I}_{\mathrm{R}}$
f is invertible and the inverse of f is given by $f^{-1}(y)=g(y)=\frac{y-3}{4}$

Question 8: Consider $\mathrm{f}: \boldsymbol{R}+\rightarrow[4, \infty)$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4$. Show that f is invertible with the inverse $f-1$ of given $\mathrm{fby} f^{-1}(y)=\sqrt{Y-4}$, where $\boldsymbol{R}+$ is the set of all non-negative real numbers.

Solution: $\mathrm{f}: \boldsymbol{R}_{+} \rightarrow[4, \infty)$ is given as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+4$.
For one - one
$f(x)=f(y)$
$\Rightarrow x^{2}+4=y^{2}+4$
$\Rightarrow x^{2}=y^{2}$
$\Rightarrow \mathrm{x}=\mathrm{y} \quad\left[\right.$ as $\left.x=y \in \boldsymbol{R}_{+}\right]$
$\therefore \mathrm{f}$ is a one - one function.
For onto
$y \in[4, \infty)$, let $y=x^{2}+4$
$\Rightarrow x^{2}=y-4 \geq 0 \quad$ [as $\left.y \geq 4\right]$
$\Rightarrow \mathrm{x}=\sqrt{Y-4} \geq 0$
for any $\mathrm{y} \in[4, \infty)$, there exists $\mathrm{x}=\sqrt{Y-4} \in \mathrm{R}_{+}$, such that
$\mathrm{f}(\mathrm{x})=\mathrm{f}(\sqrt{Y-4})=(\sqrt{Y-4})^{2}+4=y-4+4=\mathrm{y}$
$\therefore \mathrm{f}$ is onto.
f is one - one and onto and therefore, f^{-1} exists.
Let us define $\mathrm{g}:[4, \infty) \rightarrow \mathrm{R}+$ by $\mathrm{g}(\mathrm{y})=\sqrt{Y-4}$
$(g \circ f)(x)=g(f(x))=g\left(x^{2}+4\right)=v\left(x^{2}+4\right)-4=v \sqrt{X^{2}}=x$
and
$(f o g)(y)=\mathrm{f}(\mathrm{g}(\mathrm{y}))=\mathrm{f}(\sqrt{Y-4})=(\sqrt{Y-4})^{2}+4=y-4+4=y$
\therefore gof $=\mathrm{fog}=\mathrm{I}_{\mathrm{R}}$
f is invertible and the inverse of f is given by $f^{-1}(y)=g(y)=\sqrt{Y-4}$

Question 9: Consider $\mathrm{f}: \boldsymbol{R}_{+} \rightarrow[-5, \infty)$ given by $\mathrm{f}(\mathrm{x})=9 \mathrm{x}^{2}+6 \mathrm{x}-5$. Show that f is invertible with $f-1(y)=$ $\left(\frac{(\sqrt{\mathrm{y}+6})-1}{3}\right)$

Solution: $f: R_{+} \rightarrow[-5, \infty)$ is given as $f(x)=9 x^{2}+6 x-5$.
y be an arbitrary element of $[-5, \infty)$.
$y=9 x^{2}+6 x-5$
$\Rightarrow \mathrm{y}=(3 \mathrm{x}+1)^{2}-1-5=(3 \mathrm{x}+1)^{2}-6$
$\Rightarrow \mathrm{y}+6=(3 \mathrm{x}+1)^{2}$
$\Rightarrow 3 x+1=\sqrt{\mathrm{Y}+6} \quad$ [as $y \geq-5 \Rightarrow y+6>0$]
$\Rightarrow x=\left(\frac{(\sqrt{\mathrm{y}+6})-1}{3}\right)$
$\therefore \mathrm{f}$ is onto, range $\mathrm{f}=[-5, \infty)$.
define $g:[-5, \infty) \rightarrow R+$ as $g(y)=\left(\frac{(\sqrt{y+6})-1}{3}\right)$

$$
(g \circ f)(x)=g(f(x))=g\left(9 x^{2}+6 x-5\right)=g\left((3 x+1)^{2}-6\right)
$$

$=\sqrt{(3 x+1)^{2}-6+6}-1$
$=\frac{3 x+1-1}{3}=\frac{3 x}{3}=\mathrm{X}$
and
$(f \circ g)(y)=f(g(y))=\left(\frac{\sqrt{Y+6}-1}{3}\right)=\left[3\left(\frac{\sqrt{Y+6}-1}{3}\right)+1^{2}\right]_{-6}$
$=(\sqrt{\mathrm{Y}+6})^{2}-6=+6-6=y$
\therefore gof $=\mathrm{x}=\mathrm{I}_{\mathrm{R}}$ and fog $\mathrm{y}=l_{\text {Range } f}$
f is invertible and the inverse of f is given by
$f^{-1}(y)=g(y)=\left(\frac{\sqrt{\mathrm{Y}+6}-1}{3}\right)$

Question 10: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function. Show that f has unique inverse.
(Hint: suppose g_{1} and g_{2} are two inverses of f . Then for all $\mathrm{y} \in \mathrm{Y}, f o g_{1}(y)=I_{Y}(y)=f o g_{2}(y)$. Use one one ness of f).

Solution: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function.
suppose f has two inverses (g_{1} and g_{2})
for all $y \in Y$,
fog $1(y)=I_{Y}(y)=f o g 2(y)$
$\Rightarrow \mathrm{f}\left(\mathrm{g}_{1}(\mathrm{y})\right)=\mathrm{f}\left(\mathrm{g}_{2}(\mathrm{y})\right)$
$\Rightarrow g_{1}(y)=g_{2}(y) \quad$ [as f is invertible $\Rightarrow f$ is one - one]
$\Rightarrow g_{1}=g_{2} \quad$ [as g is one - one]
f has a unique inverse.

Question 11: Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$. Find f^{-1} and show that $\left(f^{-1}\right)^{-1}=f$.

Solution: Function $f:\{1,2,3\} \rightarrow\{a, b, c\}$ is given by $f(1)=a, f(2)=b$, and $f(3)=c$

If we define $\mathrm{g}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \rightarrow\{1,2,3\}$ as $\mathrm{g}(\mathrm{a})=1, \mathrm{~g}(\mathrm{~b})=2, \mathrm{~g}(\mathrm{c})=3$.

We have
$(f \circ g)(a)=f(g(a))=f(1)=a$
$(f \circ g)(b)=f(g(b))=f(2)=b$
$(f \circ g)(c)=f(g(c))=f(3)=c$
and
$(g \circ f)(1)=g(f(1))=f(a)=1$
$(g \circ f)(2)=g(f(2))=f(b)=2$
$(g \circ f)(3)=g(f(3))=f(c)=3$
\therefore gof $=I_{x}$ and fog $=l_{y}$, where $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.
inverse of f exists and $f-1=g$.
$\therefore f^{-1}:\{a, b, c\} \rightarrow\{1,2,3\}$ is given by $f^{-1}(a)=1, f^{-1}(b)=2, f^{-1}(c)=3$
If we define $h:\{1,2,3\} \rightarrow\{a, b, c\}$ as $h(1)=a, h(2)=b, h(3)=c$
$(\operatorname{goh})(1)=g(h(1))=g(a)=1$
$(g o h)(2)=g(h(2))=g(b)=2$
$(g o h)(3)=g(h(3))=g(c)=3$
and
$(\operatorname{hog})(a)=h(g(a))=h(1)=a$
$(h o g)(b)=h(g(b))=h(2)=b$
$(h o g)(c)=h(g(c))=h(3)=c$
\therefore goh $=I_{X}$ and hog $=I_{Y}$, where $X=\{1,2,3\}$ and $Y=\{a, b, c\}$.
the inverse of g exists and $g^{-1}=h \Rightarrow\left(f^{-1}\right)^{-1}=h$.
$h=f$.
Hence, $\left(f^{-1}\right)^{-1}=f$

Question 12: Let $f: X \rightarrow Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $\left(f^{-1}\right)^{-1}=f$.

Solution: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an invertible function.
there exists a function $g: Y \rightarrow X$ such that $g o f=I_{X}$ and $f o g=I_{Y}$.
$f^{-1}=g$.
gof $=I_{X}$ and $f o g=I_{Y}$
$\Rightarrow \mathrm{f}^{-1}$ of $=\mathrm{I}_{\mathrm{X}}$ and $\mathrm{fof}-1=\mathrm{I}_{\mathrm{Y}}$
$f^{-1}: Y \rightarrow X$ is invertible and f is the inverse of f^{-1} i.e., $\left(f^{-1}\right)^{-1}=f$

Question 13: If $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be given by $(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$, then fof (x) is
(A) $\frac{1}{x^{3}}$
(B) x^{3}
(C) X
(D) $\left(3-x^{3}\right)$

Solution: $f: R \rightarrow R$ as $f(x)=\left(3-x^{3}\right)^{\frac{1}{3}}$
$\therefore \mathrm{fof}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{x}))=f\left(3-x^{3}\right)^{\frac{1}{3}}=\left[3-\left(\left(3-x^{3}\right)^{\frac{1}{3}}\right)^{3}\right]^{\frac{1}{3}}$
$=\left[3-\left(3-x^{3}\right)\right]^{\frac{1}{3}}=\left(x^{3}\right)^{\frac{1}{3}}$
$\therefore \mathrm{fof}(\mathrm{x})=\mathrm{x}$
The correct answer is C .

Question 14: : Let $\mathrm{f}: \mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathrm{R}$ be a function as $\mathrm{f}(\mathrm{x})=\frac{\frac{4 x}{3 x+4}}{}$. The inverse of f is map $\mathrm{g}:$ Range $\mathrm{f} \rightarrow \mathrm{R}-\{-$ $\frac{4}{3}$ \} given by
(A) $g(y)=\frac{3 y}{3-4 y}$
(B) $g(y)=\frac{4 y}{4-3 y}$
(C) $g(y)=\frac{4 y}{4-3 y}$
(D) $g(y)=\frac{3 y}{4-3 y}$

Solution: $f: \boldsymbol{R}-\left\{-^{\frac{4}{3}}\right\} \rightarrow \boldsymbol{R}$ be a function as $\mathrm{f}(x)=\frac{4 x}{3 x+4}$
y be an arbitrary element of Range f.
there exists $x \in R-\left\{-\frac{4}{3}\right\}$ such that $y=f(x)$
$\Rightarrow \mathrm{y}=\frac{4 x}{3 x+4}$
$\Rightarrow 3 x y+4 y=4 x$
$\Rightarrow \mathrm{x}(4-3 \mathrm{y})=4 \mathrm{y}$
$\Rightarrow \mathrm{x}=\frac{4 y}{4-3 y}$
define g: Range $\mathrm{f} \rightarrow \mathrm{R}-\left\{-\frac{4}{3}\right\}$ as $\mathrm{g}(\mathrm{y})=\frac{4 y}{4-3 y}$
$\operatorname{gof}(x)=g(f(x))=g \quad\left(\frac{4 x}{3 x+4}\right)=\frac{4\left(\frac{4 x}{3 x+4}\right)}{4-3\left(\frac{4 x}{3 x+4}\right)}$
$=\frac{16 x}{12 x+16-12 x}=\frac{16 x}{16}=x$
and

$$
\begin{aligned}
& \qquad\left(\frac{4 y}{4-3 y}\right)=\frac{4\left(\frac{4 y}{4-3 y}\right)}{3\left(\frac{4 y}{4-3 y}\right)+4} \\
& f \circ(y)=f(g(y))=f \\
& =\frac{16 y}{12 y+16-12 x}=\frac{16 y}{16}=y \\
& \therefore \text { gof }=\mathrm{I}_{\mathrm{R}\left\{\left\{\frac{4}{3}\right\}\right.} \text { and fog }=\mathrm{I}_{\text {Range } \mathrm{f}} \\
& \mathrm{~g} \text { is the inverse of } \mathrm{f} \text { i.e., } \mathrm{f}-1=\mathrm{g} .
\end{aligned}
$$

the inverse of f is the map $\mathrm{g}:$ Range $\mathrm{f} \rightarrow \mathrm{R}-\left\{-\frac{\overline{3}}{3}\right\}$, which is given by $\mathrm{g}(\mathrm{y})=\frac{4 y}{4-3 y}$.
The correct answer is B.

