$\Rightarrow x_1 = x_2$

Question 1: Show that the function $f: \mathbf{R}_* \to \mathbf{R}_*$ defined by (x) = x is one-one and onto, where \mathbf{R}_* is the set of all non-zero real numbers. Is the result true, if the domain \mathbf{R}_* is replaced by N with co-domain being same as \mathbf{R}_* ?

Solution:

f: R*
$$\rightarrow R_*$$
 is by f(x) = $\frac{1}{x}$

For one – one:

 $x, y \in R*$ such that f(x) = f(y)

$$\frac{1}{x} = \frac{1}{y}$$

$$\Rightarrow$$
 x = y

For onto:

for $y \in R^*$, there exists $x = \frac{1}{y} \in R^*$ [as $y \ne 0$] such that

$$f(x) = \frac{\frac{1}{y}}{\frac{1}{y}} = y$$

∴ f is onto.

given function f is one - one and onto.

consider function g: N \rightarrow R_{*} defined by g(x) = $\frac{1}{x}$

We have,
$$g(x_1) = g(x_2)$$
 $\Rightarrow = \frac{1}{x_1} = \frac{1}{x_2}$

g is not onto as for $1.2 \in R_*$ there does not exit any x in N such that $g(x) = \frac{1}{1.2}$.

function g is one-one but not onto.

Question 2: Check the injectivity and surjectivity of the following functions:

(i) f: N
$$\rightarrow$$
 N given by f(x) = x^2

(ii) f:
$$Z \rightarrow Z$$
 given by $f(x) = x^2$

(iii)f: R
$$\rightarrow$$
 R given by f(x) = x^2

(iv) f: N
$$\rightarrow$$
 N given by f(x) = x^3

(v) f:
$$Z \rightarrow Z$$
 given by $f(x) = x^3$

Solution:

(i) f: N
$$\rightarrow$$
 N is f(x) = x^2

for
$$x, y \in N$$
, $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$.

∴ f is injective.

 $2 \in \mathbb{N}$. But, there does not exist any x in N such that $f(x) = x^2 = 2$.

∴ f is not surjective.

function f is injective but not surjective.

(ii) f: Z
$$\rightarrow$$
 Z is given by f(x) = x^2

$$f(-1) = f(1) = 1$$
, but $-1 \neq 1$.

∴ f is not injective.

, $-2 \in Z$. But, there does not exist any element $x \in Z$ such that

$$f(x) = -2 \text{ or } x^2 = -2.$$

∴ f is not surjective.

function f is neither injective nor surjective.

(iii)f:
$$R \rightarrow R$$
 is given by $f(x) = x2$

$$f(-1) = f(1) = 1$$
, but $-1 \neq 1$.

∴ f is not injective.

 $-2 \in R$. But, there does not exist any element $x \in R$ such that f(x) = -2

or
$$x^2 = -2$$
.

∴ f is not surjective.

function f is neither injective nor surjective.

(iv) f: N
$$\rightarrow$$
 N given by f(x) = x^3

for x, y
$$\in$$
 N, f(x) = f(y) \Rightarrow x³ = y³ \Rightarrow x = y.

∴ f is injective.

 $2 \in \mathbb{N}$. But, there does not exist any element $x \in \mathbb{N}$ such that

$$f(x) = 2 \text{ or } x^3 = 2.$$

∴ f is not surjective

function f is injective but not surjective.

(v) f:
$$Z \rightarrow Z$$
 is given by $f(x) = x^3$

for x, y
$$\in$$
 Z, f(x) = f(y) \Rightarrow x³ = y³ \Rightarrow x = y.

∴ f is injective.

 $2 \in Z$. But, there does not exist any element $x \in Z$ such that

$$f(x) = 2 \text{ or } x^3 = 2.$$

∴ f is not surjective.

function f is injective but not surjective.

Question 3: Prove that the Greatest Integer Function f: $R \rightarrow R$ given by f(x) = [x], is neither one – one nor onto, where [x] denotes the greatest integer less than or equal to x.

Solution: f: $R \rightarrow R$ is, f(x) = [x]

$$f(1.2) = [1.2] = 1$$
, $f(1.9) = [1.9] = 1$.

$$f(1.2) = f(1.9)$$
, but $1.2 \neq 1.9$.

 \therefore f is not one – one.

consider $0.7 \in R$.

f(x) = [x] is an integer. there does not exist any element $x \in R$ such that f(x) = 0.7.

∴ f is not onto.

the greatest integer function is neither one – one nor onto.

Question 4: In Show that the Modulus Function f: $R \to R$ given by (x) = |x|, is neither one – one nor onto, where |x| is x, if x is positive or 0 and |X| is – x, if x is negative.

Solution: f: R \rightarrow R is f(x) = |x| = $\begin{cases} X & \text{if } X \ge 0 \\ -X & \text{if } X < 0 \end{cases}$

f(-1) = |-1| = 1 and f(1) = |1| = 1

∴ f(-1) = f(1), but $-1 \neq 1$.

∴ f is not one – one.

consider $-1 \in R$.

f(x) = |x| is non-negative. there does not exist any element x in domain R such that f(x) = |x| = -1.

∴ f is not onto.

the modulus function is neither one-one nor onto.

 $\begin{cases} 1 & \text{if } X > 0 \\ 0, & \text{if } X = 0 \\ -1, & \text{if } X < 0 \end{cases}$

Question 5: Show that the Signum Function f: R \rightarrow R, given by $f(x) = \begin{bmatrix} -1, & \text{if } X < 0 \end{bmatrix}$

is neither one-one nor onto.

$$\begin{cases} 1 & \text{if } X > 0 \\ 0, & \text{if } X = 0 \\ -1, & \text{if } X < 0 \end{cases}$$

Solution: f: $R \rightarrow R$ is f(x) ==

$$f(1) = f(2) = 1$$
, but $1 \neq 2$.

∴ f is not one – one.

f(x) takes only 3 values (1, 0, or -1) for the element -2 in co-domain

R, there does not exist any x in domain R such that f(x) = -2.

∴ f is not onto.

the Signum function is neither one – one nor onto

Question 6: Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one – one.

Solution: It is given that $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$.

f: A \rightarrow B is defined as f = {(1, 4), (2, 5), (3, 6)}.

$$f(1) = 4$$
, $f(2) = 5$, $f(3) = 6$

It is seen that the images of distinct elements of A under f are distinct.

function f is one – one.

Question 7: In each of the following cases, state whether the function is one – one, onto or bijective. Justify your answer.

- (i) f: R \rightarrow R defined by f(x) = 3 4x
- (ii) f: R \rightarrow R defined by f(x) = 1 + x2

Solution: (i) f: R \rightarrow R is f(x) = 3 - 4x.

 $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$

$$\Rightarrow$$
 3-4x₁ = 3-4x₂

$$\Rightarrow$$
 -4x₁ = -4x₂

$$\Rightarrow x_1 = x_2$$

 \therefore f is one – one.

For any real number (y) in R, there exists $\frac{3-y}{4}$ in R such that $f(\frac{3-y}{4}) = 3-4(\frac{3-y}{4}) = y$

∴ f is onto.

f is bijective.

(ii) f: R \rightarrow R is defined as f(x) = 1 + x^2

 x^1 , $x^2 \in R$ such that $f(x1) = f(x^2)$

$$\Rightarrow$$
 1+ $X_1^2 = 1 + X_2^2$

$$\Rightarrow$$
 + $X_1^2 = X_2^2$

$$\Rightarrow x_1 = \pm x_2$$

 $f(x_1) = f(x_2)$ does not imply that $x_1 = x_2$

$$f(1) = f(-1) = 2$$

 \therefore f is not one – one.

Consider an element -2 in co-domain R.

 $f(x) = 1 + x^2$ is positive for all $x \in R$.

there does not exist any x in domain R such that f(x) = -2.

∴ f is not onto.

f is neither one – one nor onto.

Question 8: Let A and B be sets. Show that f: $A \times B \rightarrow B \times A$ such that (a, b) = (b, a) is bijective function.

Solution: f: $A \times B \rightarrow B \times A$ is defined as f(a, b) = (b, a).

 $(a_1, b_1), (a_2, b_2) \in A \times B$ such that $f(a_1, b_1) = f(a_2, b_2)$

$$\Rightarrow$$
 (b₁, a₁) = (b₂, a₂)

$$\Rightarrow$$
 b₁ = b₂ and a₁ = a₂

$$\Rightarrow$$
 (a₁, b₁) = (a₂, b₂)

 \therefore f is one – one.

$$(b, a) \in B \times A$$
.

there exists $(a, b) \in A \times B$ such that f(a, b) = (b, a)

∴ f is onto.

f is bijective.

$$\begin{cases} \frac{n+1}{2}, & \text{if n is odd} \\ \frac{n}{2}, & \text{if n is even} \end{cases}$$
ed by f(n) =
$$\begin{cases} \frac{n+1}{2}, & \text{for all } n \in \mathbb{N} \end{cases}$$

Question 9: Let $f: N \rightarrow N$ be defined by f(n) =

State whether the function f is bijective. Justify your answer.

$$\begin{cases} \frac{n+1}{2}, & \text{if n is odd} \\ \frac{n}{2}, & \text{if n is even} \end{cases}$$

Solution: f: N \rightarrow N is defined as f(n) =

for all n ∈ N

$$f(1) = \frac{1+1}{2} = 1$$
 and $f(2) = \frac{2}{2} = 1$

$$f(1) = f(2)$$
, where $1 \neq 2$

∴ f is not one-one.

Consider a natural number (n) in co-domain N.

Case I: n is odd

 \therefore n = 2r + 1 for some r \in N. there exists 4r + 1 \in N such that

$$f(4r+1) = \frac{4r+1+1}{2} = 2r+1$$

Case II: n is even

 \therefore n = 2r for some r \in N. there exists 4r \in N such that

$$f(4r) = \frac{4r}{2} = 2r.$$

∴ f is onto.

f is not a bijective function.

Question 10: Let A = R – {3} and B = R – {1}. Consider the function f: A \rightarrow B defined by (x) = (x-3). Is f one-one and onto? Justify your answer.

Solution: A = R - {3}, B = R - {1} and f: A \rightarrow B defined by f(x) = $\left(\frac{x-2}{x-3}\right)$

 $x, y \in A$ such that f(x) = f(y)

$$\Rightarrow \frac{X-2}{X-3} = \frac{Y-2}{Y-3}$$

$$\Rightarrow (x-2)(y-3) = (y-2)(x-3)$$

$$\Rightarrow$$
 xy - 3x - 2y + 6 = xy - 2x - 3y + 6

$$\Rightarrow$$
 -3x -2y = -2x -3y \Rightarrow x = y

∴ f is one-one.

$$y \in B = R - \{1\}$$
. Then, $y \ne 1$.

The function f is onto if there exists $x \in A$ such that f(x) = y.

$$f(x) = y$$

$$\Rightarrow \frac{X-2}{X-3} = y$$

$$\Rightarrow x - 2 = xy - 3y \Rightarrow x(1 - y) = -3y + 2$$

$$\Rightarrow x = \frac{2 - 3y}{1 - y} \in A$$

$$2 - 3y$$

for any $y \in B$, there exists $1-y \in A$ such that

$$\frac{\left(\frac{2-3y}{1-y}\right)-2}{\left(\frac{2-3y}{1-y}\right)-3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y$$

∴ f is onto.

function f is one – one and onto.

Question 11: Let f: $\mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x) = x^4$. Choose the correct answer.

- (A) f is one-one onto
- (B) f is many-one onto
- (C) f is one-one but not onto
- (D) f is neither one-one nor onto

Solution: f: $\mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x) = x^4$.

 $x, y \in R$ such that f(x) = f(y).

$$\Rightarrow$$
 $x^4 = y^4$

$$\Rightarrow$$
 x = \pm y

f(x) = f(y) does not imply that x = y.

For example f(1) = f(-1) = 1

∴ f is not one-one.

Consider an element 2 in co-domain R there does not exist any x in domain R such that f(x) = 2.

∴ f is not onto.

function f is neither one – one nor onto.

The correct answer is D.

Question 12: Let f: R \rightarrow R be defined as f(x) = 3x. Choose the correct answer.

- (A) f is one one onto
- (B) f is many one onto
- (C) f is one one but not onto
- (D) f is neither one one nor onto

Solution: f: R \rightarrow R is defined as f(x) = 3x.

 $x, y \in R$ such that f(x) = f(y).

$$\Rightarrow$$
 3x = 3y

$$\Rightarrow$$
 x = y

∴f is one-one.

for any real number (y) in co-domain R, there exists y3 in R such that $f^{\left(\frac{y}{3}\right)} = 3^{\left(\frac{y}{3}\right)} = y$

∴ f is onto.

function f is one – one and onto.

The correct answer is A.

