Question 1: Show that the function $\mathrm{f}: \mathbf{R}_{*} \rightarrow \mathbf{R}_{*}$ defined by $(x)=\frac{1}{x}$ is one-one and onto, where \mathbf{R}_{*} is the set of all non-zero real numbers. Is the result true, if the domain \mathbf{R}_{*} is replaced by N with co-domain being same as \mathbf{R}_{*} ?

Solution:

$\mathrm{f}: \mathrm{R}^{*} \rightarrow R_{*}$ is by $\mathrm{f}(\mathrm{x})=\frac{1}{x}$
For one - one:
$x, y \in R *$ such that $f(x)=f(y)$
$\Rightarrow \frac{1}{x}=\frac{1}{y}$
$\Rightarrow x=y$
$\therefore \mathrm{f}$ is one-one.

For onto:
$\underline{1}$
for $\mathrm{y} \in \mathrm{R} *$, there exists $\mathrm{x}={ }^{y} \in \mathrm{R} *[$ as $\mathrm{y} \neq 0]$ such that
$\mathrm{f}(\mathrm{x})=\frac{\frac{1}{\left(\frac{1}{y}\right)}=\mathrm{y}}{}$
$\therefore \mathrm{f}$ is onto.
given function f is one - one and onto.
consider function $\mathrm{g}: \mathrm{N} \rightarrow \mathrm{R}_{*}$ defined by $\mathrm{g}(\mathrm{x})=\frac{1}{x}$
We have, $\mathrm{g}\left(x_{1}\right)=g\left(x_{2}\right) \quad \Rightarrow=\frac{1}{x_{1}}=\frac{1}{x_{2}} \quad \Rightarrow x_{1}=x_{2}$
$\therefore \mathrm{g}$ is one - one.
g is not onto as for $1.2 \in=\mathrm{R}_{*}$ there does not exit any x in N such that $\mathrm{g}(\mathrm{x})=\frac{1}{1.2}$.
functiong is one-one but not onto.

Question 2: Check the injectivity and surjectivity of the following functions:
(i) $f: N \rightarrow N$ given by $f(x)=x^{2}$
(ii) $f: Z \rightarrow Z$ given by $f(x)=x^{2}$
(iii) $f: R \rightarrow R$ given by $f(x)=x^{2}$
(iv) $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$
(v) $f: Z \rightarrow Z$ given by $f(x)=x^{3}$

Solution:

(i) $f: N \rightarrow N$ is $f(x)=x^{2}$
for $x, y \in N, f(x)=f(y) \Rightarrow x^{2}=y^{2} \Rightarrow x=y$.
$\therefore \mathrm{f}$ is injective.
$2 \in N$. But, there does not exist any x in N such that $f(x)=x^{2}=2$.
$\therefore \mathrm{f}$ is not surjective.
function f is injective but not surjective.
(ii) $f: Z \rightarrow Z$ is given by $f(x)=x^{2}$
$f(-1)=f(1)=1$, but $-1 \neq 1$.
$\therefore \mathrm{f}$ is not injective.
,$-2 \in Z$. But, there does not exist any element $x \in Z$ such that
$f(x)=-2$ or $x^{2}=-2$.
$\therefore \mathrm{f}$ is not surjective.
function f is neither injective nor surjective.
(iii) f : $R \rightarrow R$ is given by $f(x)=x 2$
$f(-1)=f(1)=1$, but $-1 \neq 1$.
$\therefore \mathrm{f}$ is not injective.
$-2 \in R$. But, there does not exist any element $x \in R$ such that $f(x)=-2$
or $x^{2}=-2$.
$\therefore \mathrm{f}$ is not surjective.
function f is neither injective nor surjective.
(iv) $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$
for $x, y \in N, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.
$\therefore \mathrm{f}$ is injective.
$2 \in N$. But, there does not exist any element $x \in N$ such that
$f(x)=2$ or $x^{3}=2$.
$\therefore \mathrm{f}$ is not surjective
function f is injective but not surjective.
(v) $f: Z \rightarrow Z$ is given by $f(x)=x^{3}$
for $x, y \in Z, f(x)=f(y) \Rightarrow x^{3}=y^{3} \Rightarrow x=y$.
$\therefore \mathrm{f}$ is injective.
$2 \in Z$. But, there does not exist any element $x \in Z$ such that
$f(x)=2$ or $x^{3}=2$.
$\therefore \mathrm{f}$ is not surjective.
function f is injective but not surjective.

Question 3: Prove that the Greatest Integer Function $f: R \rightarrow R$ given by $f(x)=[x]$, is neither one - one nor onto, where $[x]$ denotes the greatest integer less than or equal to x.

Solution: $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is, $\mathrm{f}(\mathrm{x})=[\mathrm{x}]$
$f(1.2)=[1.2]=1, f(1.9)=[1.9]=1$.
$\therefore \mathrm{f}(1.2)=\mathrm{f}(1.9)$, but $1.2 \neq 1.9$.
$\therefore \mathrm{f}$ is not one - one.
consider $0.7 \in R$.
$f(x)=[x]$ is an integer. there does not exist any element $x \in R$ such that $f(x)=0.7$.
$\therefore \mathrm{f}$ is not onto.
the greatest integer function is neither one - one nor onto.

Question 4: In Show that the Modulus Function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ given by $(x)=|x|$, is neither one - one nor onto, where $|x|$ is x , if x is positive or 0 and $|\mathrm{X}|$ is -x , if x is negative.

Solution: $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is $\mathrm{f}(\mathrm{x})=|\mathrm{x}|= \begin{cases}X & \text { if } X \geq 0 \\ -X & \text { if } X<0\end{cases}$
$f(-1)=|-1|=1$ and $f(1)=|1|=1$
$\therefore f(-1)=f(1)$, but $-1 \neq 1$.
$\therefore \mathrm{f}$ is not one-one.
consider $-1 \in R$.
$f(x)=|x|$ is non-negative. there does not exist any element x in domain R such that $f(x)=|x|=-1$.
$\therefore \mathrm{f}$ is not onto.
the modulus function is neither one-one nor onto.

Question 5: Show that the Signum Function $f: R \rightarrow R$, given by $f(x)= \begin{cases}1 & \text { if } X>0 \\ 0, & \text { if } X=0 \\ -1, & \text { if } X<0\end{cases}$ is neither one-one nor onto.

Solution: $f: R \rightarrow R$ is $f(x)== \begin{cases}1, & \text { if } X>0 \\ 0, & \text { if } X=0 \\ -1, & \text { if } X<0\end{cases}$
$f(1)=f(2)=1$, but $1 \neq 2$.
$\therefore \mathrm{f}$ is not one - one.
$f(x)$ takes only 3 values (1,0 , or -1) for the element -2 in co-domain
R, there does not exist any x in domain R such that $f(x)=-2$.
$\therefore \mathrm{f}$ is not onto.
the Signum function is neither one - one nor onto

Question 6: Let $A=\{1,2,3\}, B=\{4,5,6,7\}$ and let $f=\{(1,4),(2,5),(3,6)\}$ be a function from A to B. Show that f is one - one.

Solution: It is given that $A=\{1,2,3\}, B=\{4,5,6,7\}$.
$f: A \rightarrow B$ is defined as $f=\{(1,4),(2,5),(3,6)\}$.
$\therefore f(1)=4, f(2)=5, f(3)=6$
It is seen that the images of distinct elements of A under f are distinct.
function f is one - one.

Question 7: In each of the following cases, state whether the function is one - one, onto or bijective. Justify your answer.
(i) $f: R \rightarrow R$ defined by $f(x)=3-4 x$
(ii) $f: R \rightarrow R$ defined by $f(x)=1+x 2$

Solution: (i) $f: R \rightarrow R$ is $f(x)=3-4 x$.
$x_{1}, x_{2} \in R$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\Rightarrow 3-4 \mathrm{x}_{1}=3-4 \mathrm{x}_{2}$
$\Rightarrow-4 x_{1}=-4 x_{2}$
$\Rightarrow \mathrm{x}_{1}=\mathrm{x}_{2}$
$\therefore \mathrm{f}$ is one - one.
For any real number (y) in R , there exists $\frac{\frac{3-y}{4}}{\text { in } R \text { such that } \mathrm{f}}\left(\frac{3-y}{4}\right)=3-4\left(\frac{3-y}{4}\right)=y$
$\therefore \mathrm{f}$ is onto.
f is bijective.
(ii) $f: R \rightarrow R$ is defined as $f(x)=1+x^{2}$
$x^{1}, x^{2} \in R$ such that $f(x 1)=f\left(x^{2}\right)$
$\Rightarrow 1+{ }^{X_{1}^{2}}=1+{ }^{2}$
$\Rightarrow+\mathrm{X}_{1}^{2}=\mathrm{X}_{2}^{2}$
$\Rightarrow \mathrm{x}_{1}= \pm \mathrm{x}_{2}$
$\therefore \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$ does not imply that $\mathrm{x}_{1}=\mathrm{x}_{2}$
$f(1)=f(-1)=2$
$\therefore \mathrm{f}$ is not one - one.
Consider an element -2 in co-domain R.
$f(x)=1+x^{2}$ is positive for all $x \in R$.
there does not exist any x in domain R such that $f(x)=-2$.
$\therefore \mathrm{f}$ is not onto.
f is neither one - one nor onto.

Question 8: Let A and B be sets. Show that $f: A \times B \rightarrow B \times A$ such that $(a, b)=(b, a)$ is bijective function.
Solution: $f: A \times B \rightarrow B \times A$ is defined as $f(a, b)=(b, a)$.
$\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in A \times B$ such that $f\left(a_{1}, b_{1}\right)=f\left(a_{2}, b_{2}\right)$
$\Rightarrow\left(b_{1}, a_{1}\right)=\left(b_{2}, a_{2}\right)$
$\Rightarrow \mathrm{b}_{1}=\mathrm{b}_{2}$ and $\mathrm{a}_{1}=\mathrm{a}_{2}$
$\Rightarrow\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right)=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right)$
$\therefore \mathrm{f}$ is one - one.
$(b, a) \in B \times A$.
there exists $(a, b) \in A \times B$ such that $f(a, b)=(b, a)$
$\therefore \mathrm{f}$ is onto.
f is bijective.

Question 9: Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{n})= \begin{cases}\frac{n+1}{2}, & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2}, & \text { if } \mathrm{n} \text { is even } \\ \text { for all } \mathrm{n} \in \mathrm{N}\end{cases}$
State whether the function f is bijective. Justify your answer.

Solution: $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ is defined as $\mathrm{f}(\mathrm{n})= \begin{cases}\frac{n+1}{2}, & \text { if } \mathrm{n} \text { is odd } \\ \frac{n}{2}, & \text { if } \mathrm{n} \text { is even }\end{cases}$ for all $n \in N$
$f(1)=\frac{\frac{1+1}{2}}{}=1$ and $f(2)=\frac{\frac{2}{2}}{2}=1$
$f(1)=f(2)$, where $1 \neq 2$
$\therefore \mathrm{f}$ is not one-one.

Consider a natural number (n) in co-domain \mathbf{N}.

Case I: n is odd
$\therefore \mathrm{n}=2 \mathrm{r}+1$ for some $\mathrm{r} \in \mathrm{N}$. there exists $4 \mathrm{r}+1 \in \mathrm{~N}$ such that
$f(4 r+1)=\frac{\frac{4 r+1+1}{2}}{2}=2 r+1$

Case II: n is even
$\therefore \mathrm{n}=2 \mathrm{r}$ for some $\mathrm{r} \in \mathrm{N}$. there exists $4 \mathrm{r} \in \mathrm{N}$ such that
$f(4 r)=\frac{\frac{4 r}{2}}{}=2 r$.
$\therefore \mathrm{f}$ is onto.
f is not a bijective function.

Question 10: Let $A=R-\{3\}$ and $B=R-\{1\}$. Consider the function $f: A \rightarrow B$ defined by $(x)=\left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.

Solution: $A=R-\{3\}, B=R-\{1\}$ and $f: A \rightarrow B$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$
$x, y \in A$ such that $f(x)=f(y)$
$\Rightarrow \frac{X-2}{X-3}=\frac{Y-2}{Y-3}$
$\Rightarrow(x-2)(y-3)=(y-2)(x-3)$
$\Rightarrow x y-3 x-2 y+6=x y-2 x-3 y+6$
$\Rightarrow-3 x-2 y=-2 x-3 y \Rightarrow x=y$
$\therefore \mathrm{f}$ is one-one.
$y \in B=R-\{1\}$. Then, $y \neq 1$.
The function f is onto if there exists $x \in A$ such that $f(x)=y$.
$f(x)=y$
$\Rightarrow \frac{X-2}{X-3}=y$
$\Rightarrow x-2=x y-3 y \Rightarrow x(1-y)=-3 y+2$
$\Rightarrow \mathrm{x}=\frac{2-3 y}{1-y} \in \mathrm{~A}$

$$
[y \neq 1]
$$

for any $y \in B$, there exists $\frac{2-3 y}{1-y} \in A$ such that
$\mathrm{f}^{\frac{2-3 y}{1-y}}=\overline{\left(\frac{2-3 y}{1-y}\right)-3}=\frac{2-3 y-2+2 y}{2-3 y-3+3 y}=\frac{-y}{-1}=y$
$\therefore \mathrm{f}$ is onto.
function f is one - one and onto.

Question 11: Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as $f(x)=x^{4}$. Choose the correct answer.
(A) f is one-one onto
(B) f is many-one onto
(C) f is one-one but not onto
(D) fis neither one-one nor onto

Solution: $f: \mathbf{R} \rightarrow \mathbf{R}$ is defined as $f(x)=x^{4}$.
$x, y \in R$ such that $f(x)=f(y)$.
$\Rightarrow x^{4}=y^{4}$
$\Rightarrow \mathrm{x}= \pm \mathrm{y}$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})$ does not imply that $\mathrm{x}=\mathrm{y}$.
For example $f(1)=f(-1)=1$
$\therefore \mathrm{f}$ is not one-one.

Consider an element 2 in co-domain R there does not exist any x in domain R such that $f(x)=2$.
$\therefore \mathrm{f}$ is not onto.
function f is neither one - one nor onto.

The correct answer is D.

Question 12: Let $f: R \rightarrow R$ be defined as $f(x)=3 x$. Choose the correct answer.
(A) f is one - one onto
(B) f is many - one onto
(C) f is one - one but not onto
(D) f is neither one - one nor onto

Solution: $f: R \rightarrow R$ is defined as $f(x)=3 x$.
$x, y \in R$ such that $f(x)=f(y)$.
$\Rightarrow 3 x=3 y$
$\Rightarrow x=y$
$\therefore f$ is one-one.
for any real number (y) in co-domain R, there exists $y 3$ in R such that $f\left(\frac{y}{3}\right)=3\left(\frac{y}{3}\right)=y$
$\therefore \mathrm{f}$ is onto.
function f is one - one and onto.

The correct answer is A .

