# TS Grewal 

Class 12
Accountancy Solutions
Vol.-1


## CHAPTER-3 - Goodwill - Nature and Valuation

## Solution 1

No. of Purchase Years $=3$ years
Average Profit $=12,000+18,000+16,000+14,000 / 4=₹ 15,000$
Goodwill = No. of Purchase Years x Average Profit
Therefore, Goodwill $=3 \times 15,000$
$=₹ 45,000$

## Solution 2

No. of Purchase Years $=4$ years
Average Profit $=4,00,000+3,98,000+4,50,000+4,45,000+$ 5,00,000/5 = ₹4,38,600
Goodwill = Average Profit x Number of Years of Purchase Therefore, Goodwill $=4,38,600 \times 4$
$=₹ 17,54,400$

## Solution 3

Goodwill = Average Profit x Number of Years of Purchase
Average Profit $=8,00,000+15,00,000+18,00,000-4,45,000+$
$13,00,000 / 5=₹ 10,00,000$
Numbers of Years of Purchase $=3$
Therefore, Goodwill $=10,00,000 \times 3=₹ 30,00,000$

## Solution 4

Goodwill = Average Profit x Number of Years of Purchase
$=2,00,000 \times 1.5=₹ 3,00,000$
Working Notes:
Calculation of Profit for the last 3 Years:
Year Profit

| 1st Year | $1,00,000$ |
| :--- | :---: |
| 2nd Year | $(1,00,000 \times 2)=2,00,000$ |
| 3rd Year | $(2,00,000 \times 1.5)=3,00,000$ |
| Total Profit | $\mathbf{6 , 0 0 , 0 0 0}$ |

Therefore, Average Profit $=6,00,000 / 3=₹ 2,00,000$

## Solution 5

Goodwill = Average Profit x Number of Years of Purchase
$=14,125 \times 4$ = ₹56,500
Working Notes:
Calculation of Profit for the last 5 Years:

| Year | Profit |
| :---: | :---: |
| $2014-15$ | 14,000 |
| $2015-16$ | 15,500 |
| $2016-17$ | 10,000 |
| $2017-18$ | 16,000 |
| $2018-19$ | 15,000 |

## Total Profit 70,500

Therefore, Average Profit for 5 Years: 70,500/5 = ₹ 14,100 Calculation of Profit for the last 4 Years:

| Year | Profit |
| :--- | :---: |
| $2015-16$ | 15,500 |
| $2016-17$ | 10,000 |
| $2017-18$ | 16,000 |
| $2018-19$ | 15,000 |
| Total Profit | $\mathbf{5 6 , 5 0 0}$ |

Therefore, Average Profit for 4 Years: 56,500/4 = ₹ 14,125

Since the profits for the last 4 years are greater than the profits for the last 5 years, ₹ 14,125 will be taken as the average profit for valuation of goodwill.

## Solution 6

Average Profit for 3 Years $=2,88,000+1,81,800+1,87,200 / 3=$ ₹2,19,000
Four Years' Average Profits $=2,88,000+1,81,800+1,87,200+$ 2,53,200/4 = ₹2,27,550
Since the average profit for 4 year is greater than the average profit for 3 years, ₹ $2,27,550$ will be taken as the total average profit for goodwill valuation.

## Solution 7

Normal Profit $=$ Total Profit - Abnormal Gain + Abnormal Loss

| Year | Total <br> Profit | (+) Abnormal Loss | (-) <br> Abnormal Gain | Normal Profit <br> (Total Profit - <br> Abnormal Gain + Abnormal Loss) |
| :---: | :---: | :---: | :---: | :---: |
| 16-17 | 1,00,000 |  | 12,500 | 87,500 |
| 17-18 | 1,25,000 | 25,000 |  | 1,50,000 |
| 18-19 | 1,12,500 |  | 12,500 (Unrecorded Expense) | 1,00,000 |
| Total |  |  |  | 3,37,500 |

Average Profit $=87,500+1,50,000+1,00,000 / 3=₹ 1,12,500$

Therefore, Goodwill $=$ Average Profit x Number of Years of Purchase
$=1,12,500 \times 2$ = ₹ $2,25,000$
Solution 8
Goodwill $=$ Average Profit x Number of Years of Purchase
Calculation of Normal Profit:

| Years | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ | $\mathbf{2 0 1 8}$ | $\mathbf{2 0 1 9}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Profit/Loss | $1,50,000$ | $3,50,000$ | $5,00,000$ | $7,10,000$ | $(5,90,000)$ |
| Add: | - | - | - | - | $1,00,000$ |
| Adjustments: | - | - | - | - | $(25,000)$ |
| Less: |  |  |  |  |  |
| Travelling |  |  |  |  |  |
| Expenses <br> Less: <br> Depreciation <br> Interest | - | - | - | $(10,000)$ | $(10,000)$ |
| Normal <br> Profit |  |  |  |  |  |

Normal Average Profit $=1,50,000+3,50,000+5,00,000+$ 7,00,000-5,25,000/5
$=11,75,000 / 5=₹ 2,35,000$
Goodwill = Average Profit x Number of Years of Purchase
Therefore, Goodwill $=2,35,000 \times 4=₹ 9,40,000$

## Solution 9

Calculation of Normal Profit:

| Year | Total <br> Profit | (+) <br> Abnormal <br> Loss | $(\boldsymbol{-}$ <br> Abnormal <br> Gain | Normal <br> Profit <br> (Total <br> Profit - <br> Abnormal <br> Gain + <br> Abnormal <br> Loss) |
| :---: | :---: | :---: | :---: | :---: |
| 2017 | $1,10,000$ |  | 30,000 | 80,000 |
| 2018 | $(80,000)$ | $1,10,000$ | - | 30,000 |
| 2019 | 30,000 | 40,000 | - | 70,000 |
| Total |  |  |  |  |

Normal Average Profit $=1,80,000 / 3=₹ 60,000$
Number of Years of Purchase $=2$ years
Therefore, Goodwill = Normal Average Profit x Number of Years of Purchase
$=60,000 \times 2=₹ 1,20,000$

## Solution 10

Calculation of Normal Profit:

| Year | Total <br> Profit | $(+)$ <br> Abnormal <br> Loss | $(-)$ <br> Abnormal <br> Gain | Normal <br> Profit <br> (Total <br> Profit - <br> Abnormal <br> Gain + |
| :---: | :---: | :---: | :---: | :---: |


|  |  |  |  | Abnormal <br> Loss) |
| :---: | :---: | :---: | :---: | :---: |
| 2017 | 50,000 | - | 5,000 | 45,000 |
| 2018 | $(20,000)$ | 30,000 | - | 10,000 |
| 2019 | 70,000 | - | $18,000+$ | 44,000 |
|  |  |  | $8,000=$ |  |
|  |  |  | 26,000 |  |
| Total |  |  |  | $\mathbf{9 9 , 0 0 0}$ |

Normal Average Profit $=99,000 / 3=₹ 33,000$
Goodwill = Normal Average Profit x Number of Years of Purchase Number of Years of Purchase $=2$ years
Therefore, Goodwill $=33,000 \times 2=₹ 66,000$
Z's Share of Goodwill = Firm's Goodwill x Z's Profit Share
$=66,000 \times 1 / 4=$ ₹ 16,500

## Solution 11

Calculation of Normal Profit:

| Year | Profit/Loss | Adjustment | Normal Profit |
| :---: | :---: | :---: | :---: |
| 31st March, 2016 | 80,000 | 20,000 | $1,00,000$ |
| 31st March, 2017 | $1,45,000$ | $(25,000)$ | $1,20,000$ |
| 31st $_{\text {st }}$ March, 2018 | $1,60,000$ | $(15,000)$ | $1,45,000$ |
| 31st March, 2019 | $2,00,000$ | - | $2,00,000$ |
| Total |  |  | $\mathbf{5 , 6 5 , 0 0 0}$ |

Average Profit= Total Normal profits/Number of Years $=5,65,000$
= ₹ $1,41,250$
Goodwill = Average Profit x Number of Years of Purchase
$=1,41,250 \times 2=₹ 2,82,500$

## Solution 12

Calculation of Normal Profit/Loss:

| Particular Yea <br> $\mathbf{s}$ $\mathbf{r}$ | $\begin{gathered} \text { 31 }_{\text {st }} \\ \text { March, } \\ 2015 \end{gathered}$ | $\begin{gathered} \text { 31 }_{\text {st }} \\ \text { March, } \\ 2016 \end{gathered}$ | $\begin{gathered} \text { 31st }_{\text {st }} \\ \text { March, } \\ 2017 \end{gathered}$ | $\begin{gathered} \text { 31st }_{\text {st }} \\ \text { March, } \\ 2018 \end{gathered}$ | $\begin{gathered} \text { 311st }_{\text {st }} \\ \text { March, } \\ 2019 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Profit/Loss | $(90,000$ | $\begin{gathered} 1,60,00 \\ 0 \end{gathered}$ | $\begin{gathered} 1,50,00 \\ 0 \end{gathered}$ | 65,000 | $\begin{gathered} 1,77,00 \\ 0 \end{gathered}$ |
| Less: Gain on Selling Machinery |  | 50,000 |  |  |  |
| Add: Abnormal Loss |  |  | 20,000 |  |  |
| Add: Existing machinery Overhaul |  |  |  |  |  |
| Debited to <br> Repairs A/c |  |  |  | $\begin{gathered} 1,00,00 \\ 0 \end{gathered}$ |  |
| Less: <br> Depreciation at 20\% |  |  |  | 15,000 | 17,000 |
| Normal Profit/Loss | $\begin{gathered} (90,000 \\ ) \end{gathered}$ | $\begin{gathered} \mathbf{1 , 1 0 , 0 0} \\ 0 \end{gathered}$ | $\begin{gathered} \mathbf{1 , 7 0 , 0 0} \\ 0 \end{gathered}$ | $\begin{gathered} \mathbf{1 , 5 0 , 0 0} \\ 0 \end{gathered}$ | $\begin{gathered} \mathbf{1 , 6 0 , 0 0} \\ 0 \end{gathered}$ |

Average Profits $=$ Total Profits/Number of Years
$=(90,000)+1,10,000+1,70,000+1,50,000+1,60,000 / 5=$ $5,00,000 / 5=₹ 1,00,000$
Goodwill = Average Profits x Number of Years of Purchase
$=₹ 1,00,000 \times 3=₹ 3,00,000$

## Solution 13

Calculation of Total Product Profit:

| Year | Profit | Weight | Product (Profit x Weight) |
| :---: | :---: | :---: | :---: |
| 2015 | 20,000 | 1 | 20,000 |
| 2016 | 24,000 | 2 | 48,000 |
| 2017 | 30,000 | 3 | 90,000 |
| 2018 | 25,000 | 4 | $1,00,000$ |
| 2019 | 18,000 | 5 | 90,000 |
| Total |  | $\mathbf{1 5}$ | $\mathbf{3 , 4 8 , 0 0 0}$ |

Weighted Average Profit = Total Profit/Total Number of Weights
= 3,48, 000/15 = ₹23,200
Therefore, Goodwill $=$ Weighted Average Profit x Number of Years of Purchase
$=23,200 \times 3=₹ 69,600$

## Solution 14

Calculation of Partner's Remuneration after Profit:

| Year | Partner's <br> Remuneration <br> before Profit (I) | Partners' <br> Remuneration <br> (II) | Partner's <br> Remuneration <br> after Profit (I - <br> II) |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 6 -}$ <br> $\mathbf{1 7}$ | $2,00,000$ | 90,000 | $1,10,000$ |
| $\mathbf{2 0 1 7 -}$ <br> $\mathbf{1 8}$ | $2,30,000$ | 90,000 | $1,40,000$ |
| $\mathbf{2 0 1 8 -}$ | $2,50,000$ | 90,000 | $1,60,000$ |
| $\mathbf{1 9}$ |  |  |  |

Calculation of Weighted Average Profit:

| Year | Profit | Weight | Product (Profit x Weight) |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 6 - 1 7}$ | $1,10,000$ | 1 | $1,10,000$ |
| $\mathbf{2 0 1 7 - 1 8}$ | $1,40,000$ | 2 | $2,80,000$ |
| $\mathbf{2 0 1 8 - 1 9}$ | $1,60,000$ | 3 | $4,80,000$ |
|  | Total | $\mathbf{6}$ | $\mathbf{8 , 7 0 , 0 0 0}$ |

Weighted Average Profit $=$ Total Product Profit/Total Number of Weights
$=8,70,000 / 6=₹ 1,45,000$
Therefore, Goodwill $=$ Weighted Average Profit x Number of Years of Purchase
$=1,45,000 \times 2=$ ₹ $2,90,000$

## Solution 15

Calculation of Weighted Profits:

| Year | Profits <br> Before <br> Salary | Profits After <br> Salary | Weights | Weighted <br> Profits |
| :---: | :---: | :---: | :---: | :---: |
| 31st <br> March, <br> 2017 | $1,40,000$ | $1,40,000-$ <br> 90,000 <br> $=50,000$ | 1 | 50,000 |
| 31st <br> March, <br> 2018 | $1,01,000$ | $1,01,000-$ <br> 90,000 <br> $=11,000$ | 2 | 22,000 |
| 31st <br> March, <br> $\mathbf{2 0 1 9}$ | $1,30,000$ | $1,30,000-$ <br> 90,000 <br> $=40,000$ | 3 |  |
| Total | $\mathbf{6}$ | $\mathbf{1 , 9 2 , 0 0 0}$ |  |  |

Weighted Average Profit $=$ Total Product Profit/Total Number of Weights
$=1,92,000 / 6=₹ 32,000$
Therefore, Goodwill $=$ Weighted Average Profit x Number of Years of Purchase
$=32,000 \times 4=₹ 1,28,000$
Solution 16
Calculation of Normal Profit/Loss:

| Particulars | Year | 31st March, 2016 | $\begin{gathered} \text { 31st }_{\text {st }} \\ \text { March, } \\ 2017 \end{gathered}$ | 31st March, 2018 | $\begin{gathered} \text { 31st }_{\text {st }} \\ \text { March, } \\ 2019 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Profit |  | 25,000 | 27,000 | 46,900 | 53,810 |
| Add: Repair of Plant |  |  | 10,000 |  |  |
| Less: Depreciation at 10\% |  |  | $(1,000)$ | (900) | (810) |
| Less: Overvaluation of Closing Stock |  |  | $(1,000)$ | $(2,000)$ |  |
| Add: Overvaluation of Opening Stock |  |  |  | 1,000 | 2,000 |
| Less: Annual Charges |  | $(5,000)$ | $(5,000)$ | $(5,000)$ | $(5,000)$ |
| Normal Profit/Loss |  | 20,000 | 30,000 | 40,000 | $\mathbf{5 0 , 0 0 0}$ |

Calculation of Weighted Profits:

| Year | Normal Profits | Weights | Weighted Profits (Normal Profits x Weights) |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 31 st March, } \\ & 2016 \end{aligned}$ | 20,000 | 1 | 20,000 |
| $\begin{aligned} & 31_{\text {st }} \text { March, } \\ & 2017 \end{aligned}$ | 30,000 | 2 | 60,000 |


| 31 st <br> 2018 | 40,000 | 3 | $1,20,000$ |
| :--- | :---: | :---: | :---: |
| 31 st <br> 2019 | 50,000 | 4 | $2,00,000$ |
| Total |  | $\mathbf{1 0}$ | $\mathbf{4 , 0 0 , 0 0 0}$ |

Weighted Average Profit = Total Product Profit/Total Number of Weights
$=4,00,000 / 10=$ ₹ 40,000
Goodwill $=$ Weighted Average Profit x Number of Years of
Purchase
$=40,000 \times 3$ = ₹ $1,20,000$

## Solution 17

Calculation of Normal Profits:

| Year | Adjustment | Normal <br> Profits |
| :---: | :---: | :---: |
| $\mathbf{2 0 1 7}$ | Total Profits - Profit on Sale of <br> Assets | $\mathbf{4 5 , 0 0 0}$ |
| $\mathbf{2 0 1 8}$ | Loss by Fire - Total Loss | $\mathbf{1 5 , 0 0 0}$ |
| $\mathbf{2 0 1 9}$ | Total Profit - Insurance Claim <br> Received - Dividend <br> $70,000-18,000-8,000$ | $\mathbf{4 4 , 0 0 0}$ |
|  |  |  |

Calculation of Weighted Profit:

| Year | Normal <br> Profits | Weights | Weighted Profits (Normal Profit <br> x Weights |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 0 1 7}$ | 45,000 | 1 | 45,000 |
| $\mathbf{2 0 1 8}$ | 15,000 | 2 |  |
| $\mathbf{2 0 1 9}$ | 44,000 | 3 | 30,000 |


| Total | 6 | $\mathbf{2 , 0 7 , 0 0 0}$ |
| :---: | :---: | :---: |

Weighted Average Profit = Total Weighted Profit/Total Number of Weigths
$=2,07,000 / 6=₹ 34,500$
Therefore, Goodwill $=$ Weighted Average Profit x Number of Years of Purchase
$=34,500 \times 2$ = ₹ 69,000
Ramesh's Goodwill Share $=69,000 \times 1 / 4=₹ 17,250$
Solution 18
Calculation of Normal Profit:

| Year | Profit/Loss | Adjustments | Normal Profit |
| :---: | :---: | :---: | :---: |
| 31st March, 2015 | 70,000 | 20,000 | 90,000 |
| 31st $^{\text {st }}$ March, 2016 | $1,40,000$ | $(30,000)$ | $1,10,000$ |
| 31st March, 2017 $^{\text {st }}$ | $1,00,000$ | - | $1,00,000$ |
| 31st $_{\text {st }}$ March, 2018 | $1,60,000$ | $(10,000)$ | $1,50,000$ |
| 31st March, 2019 | $1,65,000$ | 10,000 | $1,75,000$ |

Calculation of Weighted Average Profit:

| Year | Normal Profit | Weight | Product Profit |
| :---: | :---: | :---: | :---: |
| 31st March, 2015 | 90,000 | 1 | 90,000 |
| 31st March, 2015 | $1,10,000$ | 2 | $2,20,000$ |
| 31st March, 2015 | $1,00,000$ | 3 | $3,00,000$ |
| 31st March, 2015 | $1,50,000$ | 4 | $6,00,000$ |
| 31st March, 2015 | $1,75,000$ | 5 | $8,75,000$ |
| Total |  | $\mathbf{1 5}$ | $\mathbf{2 0 , 8 5 , 0 0 0}$ |

Weighted Average Profit = Total Product Profit/Total Number of Weights

$$
=20,85,000 / 15=₹ 1,39,000
$$

Therefore, Goodwill $=$ Weighted Average Profit $\times$ Number of Years of Purchase
$=1,39,000 \times 3=₹ 4,17,000$
Solution 19
Calculation of Normal Profits:

| Particular <br> s | $\begin{gathered} \text { Yea } \\ \mathbf{r} \end{gathered}$ | $\begin{gathered} \text { 31 }_{\text {st }} \\ \text { March, } \\ 2015 \end{gathered}$ | $\begin{aligned} & \text { 311 }{ }_{\text {st }} \\ & \text { March, } \\ & 2016 \end{aligned}$ | $\begin{gathered} \text { 31st }_{\text {st }} \\ \text { March, } \\ 2017 \end{gathered}$ | $\begin{gathered} \text { 31 }_{\text {st }} \\ \text { March, } \\ 2018 \end{gathered}$ | $\begin{gathered} \text { 31st }_{\text {st }} \\ \text { March, } \\ 2019 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Profit |  | $\begin{gathered} 1,25,00 \\ 0 \end{gathered}$ | $\begin{gathered} 1,40,00 \\ 0 \end{gathered}$ | $\begin{gathered} 1,20,00 \\ 0 \end{gathered}$ | 55,000 | $\begin{gathered} 2,57,00 \\ 0 \end{gathered}$ |
| Add: Repairs on New Machine |  |  |  |  | $\begin{gathered} 1,00,00 \\ 0 \end{gathered}$ |  |
| Less: <br> Depreciation at 20\% |  |  |  |  | 15,000 | 17,000 |
| Add: Closing Stock Undervaluation |  |  |  |  | 50,000 |  |
| Less: Opening Stock Undervaluation |  |  |  |  |  | 50,000 |
| Less: Partners' <br> Remuneration |  | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 |
| Normal Profit/Loss |  | 85,000 | $\begin{gathered} \mathbf{1 , 0 0 , 0 0} \\ 0 \end{gathered}$ | 80,000 | $\begin{gathered} \mathbf{1 , 5 0 , 0 0} \\ 0 \end{gathered}$ | $\begin{gathered} \mathbf{1 , 5 0 , 0 0} \\ 0 \end{gathered}$ |

Calculation of Weighted Profits:

| Year | Normal <br> Profits | Weights | Weighted Profits <br> (Normal <br> Profits x Weights) |
| :---: | :---: | :---: | :---: |
| 31st March, | 85,000 | 1 | 85,000 |


| 2015 |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 311st March, } \\ & 2016 \end{aligned}$ | 1,00,000 | 2 | 2,00,000 |
| $\begin{aligned} & 31_{\text {st }} \text { March, } \\ & 2017 \end{aligned}$ | 80,000 | 3 | 2,40,000 |
| $\begin{aligned} & \text { 311st March, } \\ & 2018 \end{aligned}$ | 1,50,000 | 4 | 6,00,000 |
| $\begin{aligned} & 31_{\text {st }} \text { March, } \\ & 2019 \end{aligned}$ | 1,50,000 | 5 | 7,50,000 |
| Total |  | 15 | 18,75,000 |

Weighted Average Profit = Total Weighted Profits/Total Number of Weights
$=18,75,000 / 15=$ ₹ $1,25,000$
Therefore, Goodwill $=$ Weighted Average Profits x Number of Years of Purchase
$=1,25,000 \times 3=₹ 3,75,000$
Solution 20

| Particulars | $\mathbf{2 0 1 5 - 1 6}$ | $\mathbf{2 0 1 6 - 1 7}$ | $\mathbf{2 0 1 7 - 1 8}$ | $\mathbf{2 0 1 8 - 1 9}$ |
| :--- | :---: | :---: | :---: | :---: |
| Profits | $1,01,000$ | $1,24,000$ | $1,00,000$ | $1,40,000$ |
| Capitalised <br> Repair |  |  | 30,000 |  |
| Depreciation <br> at 10\% |  |  | $(1,000)$ | $(2,900)$ |
| Overvaluation <br> of Closing <br> Stock |  | $(12,000)$ | 12,000 |  |
| Management <br> Cost | $(24,000)$ | $(24,000)$ | $(24,000)$ | $(24,000)$ |


| Sale Proceeds |  | $(10,000)$ |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Incorrect <br> Depreciation |  |  | 900 | 810 |
| Adjusted <br> Profits | 77,000 | 78,000 | $1,17,900$ | $1,13,910$ |
| Weights | 1 | 2 | 3 | 4 |
| Product | $\mathbf{7 7 , 0 0 0}$ | $\mathbf{1 , 5 6 , 0 0 0}$ | $\mathbf{3 , 5 3 , 7 0 0}$ | $\mathbf{4 , 5 5 , 6 4 0}$ |

Weighted Average Profit = Total Product Profits/Total Number of Weights
$=(77,000+1,56,000+3,53,700+4,55,640) /(1+2+3+4)$
$=1,04,234 / 10=₹ 1,04,234$
Therefore, Goodwill $=$ Weighted Average Profits x Number of Years of Purchase
= ₹ $1,04,234 \times 3$ = ₹ $3,12,702$
Note: Sale wrongly credited in 2015-16 is deducted after adjusting ₹ 1,000 profit.

## Solution 21

Average Normal Profits $=$ Average Profits + Undervaluation of
Stock $=80,000+8,000$
$=₹ 88,000$
Normal Profits $=$ Capital Employed $\times$ Rate of Income $/ 100=$ $8,00,000 \times 8 / 100=₹ 64,000$
Super Profits $=$ Average Profits - Normal Profits $=88,000-64,000$
= ₹ 24,000
Therefore, Goodwill $=$ Super Profits x Number of Years of
Purchase
$=₹ 24,000 \times 7=₹ 1,68,000$

## Solution 22

Normal Profits $=$ Capital $\times$ Normal Rate of Income/100 $=50,000 \mathrm{x}$ $15 / 100=₹ 7,500$
Actual Profit = ₹ 16,000
Super Profit $=$ Actual Profit - Normal Profit $=16,000-7,500=$ ₹8,500
Total Years of Purchase $=4$
Therefore, Goodwill = Super Profits x Number of Years of
Purchase
$=8,500 \times 4=₹ 34,000$

## Solution 23

Super Profit $=$ Average Profit - Normal Profit
Average Profit $=$ Total Weighted Profit/Total Number of Weights
$=30,000+36,000+42,000 / 3$
$=1,08,000 / 3=₹ 36,000$
Normal Profits $=$ Capital $\times$ Normal Rate of Income $/ 100=1,00,000$
x $15 / 100=₹ 15,000$
Super Profit $=$ Average Profit - Normal Profit $=₹ 36,000-₹ 15,000$ = ₹ 21,000
Total Years of Purchase $=2$
Goodwill $=$ Super Profits $\times$ Number of Years of Purchase
Therefore, Goodwill $=21,000 \times 2=₹ 42,000$

## Solution 24

Actual Profits = ₹ 5,000
Normal Profits $=$ Capital $\times$ Normal Rate of Income/ $100=25,000 \mathrm{x}$ $15 / 100=₹ 3,750$

Super Profits $=$ Actual Profits - Normal Profits $=5,000-3,750=$ ₹ 1,250
Number of Years of Purchase $=3$ years
Goodwill $=$ Super Profits x Number of Years of Purchase
$=₹ 1,250 \times 3=₹ 3,750$

## Solution 25

Goodwill = Super Profits x Number of years of Purchase
Normal Profits $=$ Capital $x$ Normal Rate of Income/100 $=2,00,000$
x $10 / 100=₹ 20,000$
Super Profits $=$ Actual Profits - Normal Profits $=30,000-20,000=$ ₹ 10,000
Years of Purchase $=2$ years
Therefore, Goodwill $=10,000 \times 2=₹ 20,000$

## Solution 26

Goodwill $=$ Super Profits $\times$ Number of Years of Purchase
Normal Profits $=$ Capital $x$ Normal Rate of Income/100 $=80,000 \mathrm{x}$ $15 / 100=₹ 12,000$
Average Profit $=$ Total Weighted Profit/Total Number of Weights
$=17,000+20,000+23,000 / 3=60,000 / 3=₹ 20,000$
Years of Purchase $=2$ years
Therefore, Goodwill $=8,000 \times 2=₹ 16,000$

## Solution 27

Goodwill $=$ Super Profits $\times$ No. of years of Purchase
Normal Profits= Capital x Normal Rate of Income/100 $=4,00,000 \times$ $15 / 100=₹ 60,000$
Year Profit before Partners’ Actual Profit after

|  | Partners' <br> Remuneration (I) | Remuneration <br> (II) | Remuneration (I - <br> II) |
| :---: | :---: | :---: | :---: |
| 2017 | $1,70,000$ | $1,00,000$ | 70,000 |
| 2018 | $2,00,000$ | $1,00,000$ | $1,00,000$ |
| 2019 | $2,30,000$ | $1,00,000$ | $1,30,000$ |

Average Profit $=$ Total Weighted Profit/Total Number of Weights
$=70,000+1,00,000+1,30,000 / 3=3,00,000 / 3=₹ 1,00,000$
Super Profits $=$ Actual Profits - Normal Profits $=1,00,000-60,000$
= ₹ 40,000
Number of Years of Purchase $=2$ years
Therefore, Goodwill $=40,000 \times 2=₹ 80,000$

## Solution 28

Goodwill $=$ Super Profits x Number of years of Purchase
Normal Profits = Capital Employed Normal Rate of Income/100
Capital Employed $=$ Total Assets - Non - Trade Investments -
Outside Liabilities
$=23,00,000-1,00,000-5,60,000=₹ 16,40,000$
Normal Profits $=16,40,000 \times 10 / 100=₹ 1,64,000$
Average Profits $=₹ 4,00,000$
Super Profits $=$ Average Profits - Normal Profits $=4,00,000$
$-1,64,000=₹ 2,36,000$
Number of Years of Purchase $=3$ years
Therefore, Goodwill $=2,36,000 \times 3=₹ 7,08,000$

## Solution 29

Goodwill $=$ Super Profits $\times$ Number of Years of Purchase
Normal Profits $=$ Capital $\times$ Normal Rate of Income/100
Capital Employed $=$ Total Assets - Non-Trade Investments Outside Liabilities
$=19,50,000-50,000-4,00,000=₹ 15,00,000$
Normal Profits $=15,00,000 \times 15 / 100=₹ 2,25,000$
Average Profits $=₹ 4,00,000$
Super Profits $=$ Average Profits - Normal Profits $=4,00,000-$ 2,25,000 = ₹ $1,75,000$
Number of Years of Purchase $=4$ years
Therefore, Goodwill $=1,75,000 \times 4=₹ 7,00,000$

## Solution 30

Goodwill $=$ Super Profits $\times$ Number of Years of Purchase
Normal Profits = Capital $\times$ Normal Rate of Income/100
Capital Employed = Total Assets - Outside Liabilities
$=22,00,000-5,60,000-4,00,000=₹ 16,40,000$
Normal Profits $=16,40,000 \times 10 / 100=₹ 1,64,000$
Average Profits = ₹ $8,00,000$
Super Profits = Average Profits - Normal Profits $=8,00,000-$ $1,64,000=₹ 6,36,000$
Number of Years of Purchase $=2.5$
Therefore, Goodwill $=6,36,000 \times 2.5=₹ 15,90,000$

