Exercise 8.3

Question 1: In figure, lines I_{1}, and I_{2} intersect at 0 , forming angles as shown in the figure. If $x=45$. Find the values of y, z and u.

Solution:

Given: $x=45^{\circ}$

Since vertically opposite angles are equal, therefore $z=x=45^{\circ}$
z and u are angles that are a linear pair, therefore, $z+u=180^{\circ}$
Solve, $z+u=180^{\circ}$, for u
$u=180^{\circ}-z$
$u=180^{\circ}-45$
$u=135^{\circ}$

Again, x and y angles are a linear pair.
$x+y=180^{\circ}$
$y=180^{\circ}-x$
$y=180^{\circ}-45^{\circ}$
$y=135^{\circ}$
Hence, remaining angles are $\mathrm{y}=135^{\circ}, \mathrm{u}=135^{\circ}$ and $\mathrm{z}=45^{\circ}$.
Question 2: In figure, three coplanar lines intersect at a point 0 , forming angles as shown in the figure. Find the values of x, y, z and u.

Solution:

($\angle B O D, z$); ($\angle D O F, y)$ are pair of vertically opposite angles.
So, $\angle B O D=z=90^{\circ}$
$\angle D O F=y=50^{\circ}$
[Vertically opposite angles are equal.]

Now, $x+y+z=180$ [Linear pair]
[$A B$ is a straight line]
$x+y+z=180$
$x+50+90=180$
$x=180-140$
$x=40$
Hence values of x, y, z and u are $40^{\circ}, 50^{\circ}, 90^{\circ}$ and 40° respectively.
Question 3 : In figure, find the values of x, y and z .

Solution:

From figure,
$y=25^{\circ} \quad$ [Vertically opposite angles are equal]
Now $\angle x+\angle y=180^{\circ}$ [Linear pair of angles]
$\mathrm{x}=180-25$
$x=155$

Also, $\mathrm{z}=\mathrm{x}=155 \quad$ [Vertically opposite angles]
Answer: $y=25^{\circ}$ and $z=155^{\circ}$
Question 4 : In figure, find the value of \mathbf{x}.

Solution:
$\angle A O E=\angle B O F=5 x$ [Vertically opposite angles]
$\angle C O A+\angle A O E+\angle E O D=180^{\circ} \quad$ [Linear pair]
$3 x+5 x+2 x=180$
$10 x=180$
$x=180 / 10$
$x=18$

The value of $x=18^{\circ}$
Question 5 : Prove that bisectors of a pair of vertically opposite angles are in the same straight line.

Solution:

Lines $A B$ and $C D$ intersect at point O, such that
$\angle A O C=\angle B O D$ (vertically angles) ...(1)
Also $O P$ is the bisector of $A O C$ and $O Q$ is the bisector of $B O D$
To Prove: $P O Q$ is a straight line.

OP is the bisector of $\angle A O C$:
$\angle A O P=\angle C O P$...(2)
$O Q$ is the bisector of $\angle B O D$:
$\angle B O Q=\angle Q O D$...(3)

Now,
Sum of the angles around a point is 360°.

```
\angleAOC + \angleBOD + \angleAOP + \angleCOP + \angleBOQ + \angleQOD = 360'
\angleBOQ + \angleQOD + \angleDOA + \angleAOP + \anglePOC + \angleCOB = 360
2\angleQOD + 2\angleDOA + 2\angleAOP = 360
\angleQOD + }\angleDOA+\angleAOP = 180'
POQ = 180
```

Which shows that, the bisectors of pair of vertically opposite angles are on the same straight line.

Hence Proved.

Question 6 : If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

Solution: Given $A B$ and $C D$ are straight lines which intersect at O.
$O P$ is the bisector of $\angle A O C$.
To Prove: $O Q$ is the bisector of $\angle B O D$
Proof:

$A B, C D$ and $P Q$ are straight lines which intersect in O.

Vertically opposite angles: $\angle \mathrm{AOP}=\angle \mathrm{BOQ}$
Vertically opposite angles: $\angle \mathrm{COP}=\angle \mathrm{DOQ}$
OP is the bisector of $\angle A O C: \angle A O P=\angle C O P$

Therefore, $\angle B O Q=\angle D O Q$
Hence, $O Q$ is the bisector of $\angle B O D$.

