Exercise 8.3

Question 1: In figure, lines I_1 , and I_2 intersect at O, forming angles as shown in the figure. If x = 45. Find the values of y, z and u.

Solution:

Given: $x = 45^{\circ}$

Since vertically opposite angles are equal, therefore $z = x = 45^{\circ}$

z and u are angles that are a linear pair, therefore, $z + u = 180^{\circ}$ Solve, $z + u = 180^{\circ}$, for u $u = 180^{\circ} - z$ $u = 180^{\circ} - 45$ $u = 135^{\circ}$ Again, x and y angles are a linear pair.

 $\begin{array}{l} x+y=180^{0}\\ y=180^{0}-x\\ y=180^{0}-45^{0}\\ y=135^{0}\\ \end{array}$ Hence, remaining angles are y = 135⁰, u = 135⁰ and z = 45⁰.

Question 2 : In figure, three coplanar lines intersect at a point O, forming angles as shown in the figure. Find the values of x, y, z and u.

Solutions for Class 9 Maths Chapter 8 Lines and Angles

Solution:

 $(\angle BOD, z)$; $(\angle DOF, y)$ are pair of vertically opposite angles.

So, $\angle BOD = z = 90^{\circ}$

 \angle DOF = y = 50⁰ [Vertically opposite angles are equal.]

```
Now, x + y + z = 180 [Linear pair]
[AB is a straight line]
```

x + y + z = 180 x + 50 + 90 = 180 x = 180 - 140 x = 40Hence values of x, y, z and u are 40° , 50° , 90° and 40° respectively.

Question 3 : In figure, find the values of x, y and z.

Solution:

From figure,

y = 25° [Vertically opposite angles are equal] Now $\angle x + \angle y = 180^{\circ}$ [Linear pair of angles]

x = 180 - 25 x = 155

Also, z = x = 155 [Vertically opposite angles] Answer: $y = 25^{\circ}$ and $z = 155^{\circ}$

Question 4 : In figure, find the value of x.

Solution:

 $\angle AOE = \angle BOF = 5x$ [Vertically opposite angles]

 \angle COA+ \angle AOE+ \angle EOD = 180⁰ [Linear pair]

3x + 5x + 2x = 180 10x = 180 x = 180/10 x = 18

The value of $x = 18^{\circ}$

Question 5 : Prove that bisectors of a pair of vertically opposite angles are in the same straight line.

Solution:

Lines AB and CD intersect at point O, such that

 $\angle AOC = \angle BOD$ (vertically angles) ...(1)

Also OP is the bisector of AOC and OQ is the bisector of BOD

To Prove: POQ is a straight line.

OP is the bisector of $\angle AOC$: $\angle AOP = \angle COP \dots (2)$ OQ is the bisector of $\angle BOD$: $\angle BOQ = \angle QOD \dots (3)$

Now, Sum of the angles around a point is 360°.

 $\angle AOC + \angle BOD + \angle AOP + \angle COP + \angle BOQ + \angle QOD = 360^{\circ}$

 $\angle BOQ + \angle QOD + \angle DOA + \angle AOP + \angle POC + \angle COB = 360^{\circ}$

 $2 \angle QOD + 2 \angle DOA + 2 \angle AOP = 360^{\circ}$ (Using (1), (2) and (3))

 \angle QOD + \angle DOA + \angle AOP = 180⁰ POQ = 180⁰

Which shows that, the bisectors of pair of vertically opposite angles are on the same straight line.

Hence Proved.

Solutions for Class 9 Maths Chapter 8 Lines and Angles

Question 6 : If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

Solution: Given AB and CD are straight lines which intersect at O. OP is the bisector of \angle AOC. To Prove : OQ is the bisector of \angle BOD Proof :

AB, CD and PQ are straight lines which intersect in O.

Vertically opposite angles: $\angle AOP = \angle BOQ$

Vertically opposite angles: \angle COP = \angle DOQ

OP is the bisector of \angle AOC : \angle AOP = \angle COP

Therefore, $\angle BOQ = \angle DOQ$ Hence, OQ is the bisector of $\angle BOD$.