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Derivatives as a Rate Measurer Ex 13.2 Q1

Let total suface area of the cylinder be A
A=2ar(h+r]

Differentiating it with respect to r as r varies
34
— =Z2ar [0+ 1)+ [h+r)2x
o sar(pe 1)+ (her)

= 2rr + 2xh + 281

A _ dar +Zah

ar
Derivatives as a Rate Measurer Ex 13.1 Q2

Let O be the diatmeter and r be the radius of sphere,

So, volume of sphere = %m’z

4 (o
w=_—g|=
3 |z
4
V=—JTDS
24

Differentiating it with respect to D,

a‘_u= Efgz
gD 24
av _ 20
do 2

Derivatives as a Rate Measurer Ex 13.1 Q3
Given, radius of sphere(r) = 2om.
“We know that,

and A= 4grf

Z_f = Brr® - (i}

Dividing equation (i} by (i},
Qv
£= dare
.:!'_,4 B
ar

ol

r
a4 2

[G‘_V] =1
A

Derivatives as a Rate Measurer Ex 13.1 Q4



Let r be two radius of croular disc,
We know that,

Area A= gre

= - 2ar — i

Circum ference C = 2gr
el .
— = 2x ==
ar II :I

Dividing equation (i} by (i},
A
dr _ 20
ﬁ 2x
ar

&),
dCd, s

Derivatives as a Rate Measurer Ex 13.1 Q5

Letr be the radius, v be the volume of cone and & be height

v=lrr2h
3

agv 2

— = — &th.

wls SH

Derivatives as a Rate Measurer Ex 13.1 Q6

Letr be radius and d be area of cirde, so

A= xqrt
a4

— = 28r
ar

Derivatives as a Rate Measurer Ex 13.1 Q7

Here, r =2 cm
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Marginal costis the rate of change of total cost with respect to output.

~Marginal cost (MC)= % =0.007(3x" |- 0.003(2x) +15

= 0.021x° ~ 0.006x +15

When x = 17. MC = 0.021 (172) — 0.006 (17) + 15
= 0.021(289) — 0.006(17) + 15

= 6.069 —0.102 + 15

=20.967

Hence,  when 17 units are produced, the marginal cost is Rs..20.967

Derivatives as a Rate Measurer Ex 13.1 Q9

Marginal revenue is the rate of change of total revenue with respect to the number of units sold.

~Marginal Revenue (ME) — ﬂ= 13(2x) +26 = 26x + 26
dx

Whenx=7.
ME=26(7)+26=182+26=208

Hence, the required marginal revemie is F.s 208.
Derivatives as a Rate Measurer Ex 13.1 Q10

Rix)=3x"+36x+5

IR

=5 S5

T X4

d—R =Hx5+ 36
ax |, _s

=30+ 35

= 655

This, as per the question, indicates the money to be spent
on the welfare of the employess, when the number of emplovees is 5.
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Let x be the side of square.
Given, d—X= 4 cmfmin, x =8 om
ot
We know that
Area [A) = xZ

d_A—EXd_X
gt at

(%), -2x@@

d—’q=64 cm? fmin
at

Area increases at a rate of 64 cm? /min.

Derivatives as a Rate Measurer Ex 13.2 Q2
Let edge of the cube is »x cm.

i
— =3 cm/fsec, ¥ =10 cm
at /
Let v be volume of cube,
Vo=
G"_'._f= EXZG._X
at at

3(109% = (3)

900 cm® /sec

S0,

volume increases at arate of.900 cm? / sec.
Derivatives as a Rate Measurer Ex13.2 Q3
Let x be the side of the square.

iy

H , — =02 s

ere — Cim fsec
£ o= 4x
ar _ g, ox
ot gt
= 4x(D.2)

d—P = 0.8 cm/fsec
ot

So, perimeter increases at the rate of 0.8 om /sec.
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The circumference of a circle (C) with radius (») is given by
C=2mr

Therefore, the rate of change of circumference (C) with respect to time (¢ is given by,

dC  dC dr

=—=.2 (Bv chain rule)

dr dr di

o edr
=2 (2
dr[ m} it

mi*ﬂ:r£
ot

Itis given that % =0.7 cm/s .
!

Hence, therate of increase of the circumference {s2n {U,? ] =1.41 cm/s.

Derivatives as a Rate Measurer Ex 13.2 Q5
Let r be the radius of the spherical soap bubble.

Here, d—r =0.2 cm/fsec, ¥ =7 cm
ot
Surface Area [Aj = dgr2

aA ar
E= 4JT (EFJE

[a‘_ﬂ] =4’T[2 x?jx[l.
dat =7

=11.2x¢ cmz,ﬁzec.

So, area of bubble increases at the rate of 11.2¢7 cm</sec.
Derivatives as a Rate Measurer Ex 13.2 Q6

The volume of a sphere (V) with radius () is given by,

V =—mr
3

~Rate of change of volume (V) with respect totime (2} is given bv,

w_dv ar
di dr dt [Bv chain rule]

d [4 J,] dr

= | — - —_

drl 3 i
. dr

=4 - —
dt

Itis given that % =900 cm’ /s



or

- 900 = 4art - —
it
dr 900 225
di  dmrt W

Therefore, when radius = 15 cm,

. . . e e oae . )
Hence, the rate at which the radius of the balloon increases when the radius is 15 cm is — cm/s.

Derivatives as a Rate Measurer Ex 13.2 Q7
Let r be the radius of the air bubble,

ar
Here, s =0.5 cm/fsec, ¥ =1 cm

Yolume (V) = %mj

GG,.—IL:= %z{HrZ %
= 4JTF2£
= 4x (1)° x(0.5)
(g%

2 = 2r cm¥/sec,
ar

So,volume of air bubble increases at the rate of 27 om®/sec.

Derivatives as a Rate Measurer Ex 13.2 Q8
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Let A8 be the lamp-post. Suppose at time ¢, the man C0 is at 3 distance of ¥ meters from
the lamp-post and v meters be the length of his shadow C&.

Here, d—x =5 km/hr
Jt

CO=2m,A8 =6m

Here, AABE and ACDE are similar, so

A& AE
o CE

B _ w4y
2y

3y =X+
2y = N
o9y _ X
gt 4t
Y _5
gt 2

. . 5
So, the length of his shadow increases at the rate of 5 krm/hr.
Derivatives as a Rate Measurer Ex 13.2 Q9
The area of a circle (4) withradius (#)is given by 4 =1

Therefore, the rate of change of area (4) with respect totime (¢l 15 given by,

r ir :
e i [Bv chain ‘mle]
di dtt 7 dr di el

st fr _
[tis given that— =4 cm/s -
lf

Thus, when »= 10cm,

d4

= = om(19(a)=80n

i i

Hence, when the radius of the circular wave is & cm, the enclosed area is increasing at the rate of

80m cm/s

Derivatives as a Rate Measurer Ex 13.2 Q10

B
n\\\-
\\x
\\\D
B
\\\\\
.,

.,

o
[ —  — | —t— —— \_
- - -
A c E



Let A8 be the height of pole. Suppose at time #, the man CD is at a distance of x meters
from the lamp-post and v meters be the length of his shadow C£, then

(ot
—=1.1
_ Wizl

MAEBE iz similar to ACDE,

A8 _ AE
cD CE
600  x +y
160
E_X+j,-"
4y

15w = 4 4+ 4y
11y = 4

P
Lrl's ait
ay 4

o 1.1
at 11II )
di=[l.4mf59n:
aw

Fate of increasing of shadow = 0.4 m/fsec.
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Let A8 be the height of source of light, Suppose at time ¢, the man CD is
at a distance of ¥ meters from the lamp-post and ¥ meters be the length
of his shadow CE£, then

L}y
=
_ i sec

MABE is similar to ACDE,

A8 _ AE
o CE
200 X +¥
180
Sy =Xx+y
4y = ¥
dr _ @
dt  at
 _2
a4

dy
—=0.5
_ I /sec

So, rate of increase of shadow is 0.5 m/fsec.



The diagram of the problem is shown below
:

P\
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I & = L] =g

g e - -

Let A8 be the position of the ladder, at time ¢, such that @4 = and 08 = v

Here,

0A% + 0B = AB*®

%24 yd = [13}2

x% 4+ y% =160 -=—{i}
And z'.it= 1.5 m/sec
From figure, tan5'=£

Differentiating equation (i) with respect to ¢,

ay

A +2y —— =10
eV e
dy aw



Differentiating equation [ii) with respect to ¢,

o o
SECzﬂﬁ = —dd_};_yﬁ
ot x*
3N
s x[—g] - ¥ [1.5]
2
_ -1.Ex% - 1.5¢°

= e

Pl —1.5{X2+}-’2)
gt x4y sect o
—1.5{;«’2 +y2}

xzy {1 + tan® 5')
oo —1.5{x2 +y2)

ot 2
xzy [1 + ’V—EJ
X

-1.5 {XE +y2) 5

Xz}f [X2+y2)
-LS

¥
-1.5

V169 - x?

-1.k

169 - 144

-1.5

g
= -0.2 radian/sec

So, angle between ladder and ground is decreasing at the rate of 0.3 radian/sec.

Derivatives as a Rate Measurer Ex 13.2 Q13



Here, curve is

¥ o= xT 4+ 2x

gy .
and  —=— —
" Gr T @ ()

y=x2+2X

dy ax s

uE A PP AR - Rl
T gt Ym e
= d—y=d—x|:2x+2:|

ar a4t

Using equation (i},

2x+2=1
2x =-1
1
»o= =
2
5o, y=x2+2x
2
= _l + 2 _l
2
1
=—-1
4
_ 3
Y Ty

. . . 1 3
So, required pointsis |- =,- = |.
quired p -2-3]

Derivatives as a Rate Measurer Ex 13.2 Q14

Here,

i .
— = 4 units/sec, and x = 2
at /

And, w=7Tx -7

dy
=] f th 5)=—
ope of the curve(S) o
5 =7-3x"
G'_,S‘ = —bBX G"_X
at at

= -48 units/sec

So, slope is decreasing at the rate of 48 units/sec.

Derivatives as a Rate Measurer Ex 13.2 Q15



Herge,

A fead (i
ait at

adnd, W= P

3 gz

at at

I?=13

8% =1

N =%1

Putx=1=y=(1)°=1
Putx = -1=y=[-1)"=-13

So, the required points are [1,1) and [-1,-1].

Derivatives as a Rate Measurer Ex 13.2 Q16(i)

Here,
d(sing
o dlsin8) _ a8
ot ait
ExCDSEd—E=d—S
at qt
2oosd =1
|:|:|5-9=l
2
=1,
3

de
E__zd [cos8)
da . da
Y _o(—zinel 2
g = 2lenel
1="=2=ins
. i
sme=§
e

]

Derivatives as a Rate Measurer Ex 13.2 Q17

[Using equation (i ]



Dw

L L
c A

Let &0 be the wall and A& is the ladder

s

Here, A8 =6 meter and | = = 0.5 m/fsec,
G‘lt reid

From figure,
AB? = x* +y2
[6)2 =x?4y?

3E|=x2+y2

Differentiating it with respect to £,

D=2xd—x+2yd—y
at it
ay __xox
at v at
[d_y] __4{0.5]
at ) s \|'3Eu—x2
2
36 - 16
___2
25
=—i I /sec,

N

So, ladder top is sliding at the rate of

1

NG

mfsec,



Mow, to find x when d—X = _d_y

at at
From equation (i},
gy Xy
ar  yar
dx X dx
Tgr yar
M=y

oo,

3E|=x2+y2

36 = )<'2+)<'2
2% = 36
x% =18

x=3«.|5m

When foot and top are mowing at the same rate, foot of wall is 342 meters away from the
weall

Derivatives as a Rate Measurer Ex 13.2 Q18
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Let height of the cone is »x om. and radius of sphereisr on.

Here given,
xo=2r - i}
h=x4+r
h=2r+r
h=3r - (i

v = volume of cone + volume of hemisphere

Larze 42408
2 3

= %m’z[zrj+§fr3 [USing equation [iij]
v Zart el gt
K]
g
]
4 (RY
= — 7| —
3 3
Vo= im’?S
21
v 4 =
— = — 3
ar a1
av = Eﬂ(gf
ah), s B1
[ﬁ] =127 cm?
ah Jya

volurme is changing at the rate 127 cm? with respect to total height.

Derivatives as a Rate Measurer Ex 13.2 Q19



10m

Let @ be the semi vertical angle of the cone CA& whose height O is 10 m
and radius 08 =5 m.

M oy,

o8
tanw = —
20

_ g

10

tanwm = l

2

Let ¥ he the volume of the water in the cone, then

v=%x[0'5'f(c0')
=%ﬂ(manaf(h)
v=lzh3tan2m
v = 2 K2 tamx=l]
12 I 2
dv _ 7 hzﬂ
gt 12 gt
_JT zlfa"h I G‘lllfl_ e
_Ehﬁ _ E-rn fm|ni|
@:i
o he
[ﬁ] - [+h=10-7.5=2.5m]
tlas (2.5)
4
© 6.25
=0.64 msmin

So, water leval isrising at the rate of 0.64 m/min.

Derivatives as a Rate Measurer Ex 13.2 Q20



Let A8 be the l[amp-post. Suppose at time ¢, the man o is at a distance
x m. from the lamp-post and v m be the length of the shadow CE.

Here, d—X= & km/hr
at

CO=2m,A8 =6m

Here, MAEE and ACDE are similar

AE  AE
Sa, —=—

oo CE

E=x+y

2 ¥

Iy =x+y

2y = x

dy  dx

ar gt

oY _

aqt

dy

— =3 km/h

r m /hr

Sao, length of his shadow increases at the rate of'3 km/hr.

The diagram of the problem is shown below
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A 3
Here, — =2 cm~/sec
ait /

To find d—v atr =6 cm
it

A= dgr?
A4 q ra‘r
—_— = ary —
a a
2= Bm‘ﬂ
ol
adr 1
— = — cm/fsec
adt dxr

4
Mow, W = Em’g

QY _ 29
at at
= dgr? [—]
4y
=r
d—v = & om >/ sac
at

So, volume of bubble is increasing at the rate of & cmg,fzen:.

Derivatives as a Rate Measurer Ex 13.2 Q22

ar ah
Here, — =2 cm/sec, — = -3 cm/sec
at / at /

To find Z,l—l";whenr=3c:m,h=5cm

Mow, V =wvolume of cylinder

V = arZh

G‘—V= H[Erﬂxh +r2@i|

ar at

2 2

- 7[2(3)2)(5)+ (3)° (-3)°]
= r[60-27]

G‘—V= 33 cmgfzec

ar

So, volume of cylinder is increasing at the rate of 337 om¥/sec.

Derivatives as a Rate Measurer Ex 13.2 Q23



Let V¥ be volume of sphere with miner radius v and onter radius &, then

v =fz[23-r3)

3
G‘_V=EK[HR20'_R_3F2£]
at

3 at at

0= EB[REd—R—rZE}

Since volume W is constant
3 at ot [ :l

Fate of increasing of onter radius = % crmfsec,

Derivatives as a Rate Measurer Ex 13.2 Q24



C
Let o be the semi vertical angle of the coné C48 whose height CO is half of radius 08!

Mo,

o8

tane, = —
(&)

08 [+ CO = 208]

208

tane, = l
2

Let v be the volume of the sand in the cone

W = l)ﬂ"zh
3
2
_1 [EJ h
3 2
1 [
=T K3
12
av _ 3_”,.5-,.2@
adt 12 at
cp o 34200 LV e o /min
1z gt it
ah _ 200
gt gh?
i 200
7 (5)°
dh 8 .
ol ﬂqcmfmln

Rate of increasing of height = i cm /min
i

=

Derivatives as a Rate Measurer Ex 13.2 Q25
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Let & be the position of kite and AC be the string.

Here, y2=)‘:'2+|:12EIj2 ———[ij
yﬁ:gxd_x
ot ot
dy _ dx
Yar =7 ar
dy X .
-~ = _[kZ -—=
7 -2(s2) i)

From equation (i},
vi= x4 [12!])2
(1307% = x% 4 (120
x? = 16900 - 14400

x% = 2500
x =50

Using equation i},

dy  x
E-},(EEJ
B0
= 135152
= 20 misec

So, string is being paid out at the rate of 20 m/sec.

Derivatives as a Rate Measurer Ex 13.2 Q26
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52 m,-f’Sec:]



Here,

dy _ o
gt gt
and = E){3+1
Y13
)] 2 2I_'_4"X
_ = 3){ JRE—
gr 37 Gr
gd_X= 2 G
t ot
2 = 2x?
= ¥ ==1
21 =
== 1
W [BJX +
Putx =1, y=5+1=E
3 3
Putwx=-1 y=3|1—lj+1
' 3

So, required point [1,;] and [

Wl

[Using equation (if]

Derivatives as a Rate Measurer Ex 13.2 Q27

Here,
dx oy

gt 4t
and  curve is
yz = B
ol
el
2y =18
Wo=4
= [4)2 = B

= =2

So, required point = (2,4).

()

[u sing equation [|j:|

Derivatives as a Rate Measurer Ex 13.2 Q28



Let edge of cube be »x cm
Here,

d—v =9 cm?/sec
it

To find d—A when x =10 cm
ot

We know that

Vo=
o iV e i
il sl
gr [er
o-3(10? %
ar
G‘_X—i U’T‘I,."'ISEC
dt 100
Mo, A =652
(ol (el
oo ey I
gr N ar
- 12(1uj[i]
100
A 5
—=3.6 .
_ Ch = fsec

Derivatives as a Rate Measurer Ex 13.2 Q29

Given, d—v= 25 om 2 /sec
ar

To find G‘—A when ¥ = 5 cm
gt

We know that,

L’ =im'3
3
av 4 21 Gr
2 Zalarel
ar 3”{ r }a‘t
25 = 4x (5)2%
d—r= 1 cin fsec
at 4r
Mow, A= 4ir?
A ar
Z =8y
at at
1

ol .
— =10 cm*/sec.
ot /

Derivatives as a Rate Measurer Ex 13.2 Q30



Given,

d_x = -5 cm/min
at
(;—}; =4 cm/min

() To find % when x = 8cm,y =6 cm

P=2(x+y)
dp (2,9
t \dt dt
=2(-5+4)
Z—i=—2cm/mm

(i) To find % whenx =8 cm and ¥ =6 cm

A= xy
dA ay ax
at  Xac VG

= (8) (G

=32-30

dA 2, -
= =2 .
o cm</min

Derivatives as a Rate Measurer Ex 13.2 Q31

Let r be the radius of the given disc and A be its area
Then, A= ar?

da dr .

— = 2ar — by chain rule

at - ot [by ]
Now, the approximate increase ofradius = dr=%At = 0.05cm /sec

. the approximate rate of increase in areais given by

daA dr 3
dA = —+(at)= 2ar [aﬁt)ﬂn (3.2)(0.05) = 0.320%cm> /s



