$$
\begin{aligned}
& \text { RD Sharma } \\
& \text { Solutions Class } \\
& 12 \text { Maths } \\
& \text { Chapter } 13 \\
& \text { Ex } 13
\end{aligned}
$$

## Derivatives as a Rate Measurer Ex 13.2 Q1

Let total suface area of the cylinder be $A$

$$
A=2 \pi r(h+r)
$$

Differentiating it with respect to $r$ as $r$ varies

$$
\begin{aligned}
\frac{d A}{d r} & =2 \pi r(0+1)+(h+r) 2 \pi \\
& =2 \pi r+2 \pi h+2 \pi r
\end{aligned}
$$

$$
\frac{d A}{d r}=4 \pi r+2 \pi h
$$

## Derivatives as a Rate Measurer Ex 13.1 Q2

Let $D$ be the diatmeter and $r$ be the radius of sphere,

So, volume of sphere $=\frac{4}{3} \pi r^{2}$

$$
\begin{aligned}
& v=\frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} \\
& v=\frac{4}{24} \pi D^{3}
\end{aligned}
$$

Differentiating it with respect to $D$.

$$
\begin{aligned}
& \frac{d v}{d D}=\frac{12}{24} \pi D^{2} \\
& \frac{d v}{d D}=\frac{\pi D^{2}}{2}
\end{aligned}
$$

Derivatives as a Rate Measurer Ex 13.1 Q3
Given, radius of sphere $(r)=2 \mathrm{~cm}$
We know that,

$$
\begin{align*}
& v=\frac{4}{3} \pi r^{2} \\
& \frac{d v}{d r}=4 \pi r^{2} \tag{i}
\end{align*}
$$

And $A=4 \pi r^{2}$

$$
\begin{equation*}
\frac{d A}{d r}=8 \pi r^{2} \tag{ii}
\end{equation*}
$$

Dividing equation (i) by (ii),

$$
\begin{aligned}
& \frac{d v}{d r} \\
& \frac{d A}{d r}
\end{aligned}=\frac{4 \pi r^{2}}{8 \pi r}, \begin{aligned}
& \frac{d v}{d A}=\frac{r}{2} \\
& \left(\frac{d v}{d A}\right)_{r-2}=1
\end{aligned}
$$

Let $r$ be two radius of circular disc.
We know that,

$$
\begin{align*}
\text { Area } A & =\pi r^{2} \\
\frac{d A}{d r} & =2 \pi r \tag{i}
\end{align*}
$$

Ciroumference $C=2 \pi r$

$$
\begin{equation*}
\frac{d c}{d r}=2 \pi \tag{ii}
\end{equation*}
$$

Dividing equation (i) by (ii),

$$
\begin{aligned}
& \frac{\frac{d A}{d r}}{\frac{d c}{d r}}=\frac{2 \pi r}{2 \pi} \\
& \frac{d A}{d c}=r \\
& \left(\frac{d A}{d c}\right)_{r-3}=3
\end{aligned}
$$

## Derivatives as a Rate Measurer Ex 13.1 Q5

Let $r$ be the radius, $v$ be the volume of cone and $h$ be height

$$
\begin{aligned}
& v=\frac{1}{3} \pi r^{2} h \\
& \frac{d v}{d r}=\frac{2}{3} \pi m
\end{aligned}
$$

Derivatives as a Rate Measurer Ex 13.1 Q6
Let $r$ be radius and $A$ be area of cirde, so

$$
\begin{aligned}
& A=\pi r^{2} \\
& \frac{d A}{d r}=2 \pi r \\
& \left(\frac{d A}{d r}\right)_{r-5}=2 \pi(5) \\
& \left(\frac{d A}{d r}\right)_{r-5}=10 \pi
\end{aligned}
$$

Derivatives as a Rate Measurer Ex 13.1 Q7

$$
\text { Here, } \begin{aligned}
& r=2 \mathrm{~cm} \\
& v=\frac{4}{3} \pi r^{3} \\
& \frac{d^{\prime} V}{d r}=4 \pi r^{2} \\
&\left(\frac{d^{\prime} V}{d r}\right)_{r-2}=4 \pi(2)^{2} \\
&\left(\frac{d^{\prime} V}{d r}\right)_{r=2}=16 \pi
\end{aligned}
$$

Marginal cost is the rate of change of total cost with respect to output.
$\therefore$ Marginal cost $(\mathrm{MC})=\frac{d \mathrm{C}}{d x}=0.007\left(3 x^{2}\right)-0.003(2 x)+15$
$=0.021 x^{2}-0.006 x+15$
When $x=17, \mathrm{MC}=0.021\left(17^{2}\right)-0.006(17)+15$
$=0.021(289)-0.006(17)+15$
$=6.069-0.102+15$
$=20.967$

Hence, when 17 units are produced, the marginal cost is Rs 20.967

## Derivatives as a Rate Measurer Ex 13.1 Q9

Marginal revenue is the rate of change of total revenue with respect to the number of units sold.
$\therefore$ Marginal Revenue $(M R)=\frac{d R}{d x}=13(2 x)+26=26 x+26$

When $x=7$,
$\mathrm{MR}=26(7)+26=182+26=208$

Hence, the required marginal revenue is Rs 208.
Derivatives as a Rate Measurer Ex 13.1 Q10

$$
\begin{aligned}
& R(x)=3 x^{2}+36 x+5 \\
& \frac{d R}{d x}=6 x+36 \\
& \left.\frac{d R}{d x}\right|_{x-5}=6 \times 5+36 \\
& =30+36 \\
& =66
\end{aligned}
$$

This, as per the question, indicates the money to be spent on the welfare of the employess, when the number of employees is 5 .

$$
\begin{gathered}
\text { RD Sharma } \\
\text { Solutions } \\
\text { Class } 12 \text { Maths } \\
\text { Chapter } 13 \\
\text { Ex } 13.2
\end{gathered}
$$

Let $x$ be the side of square.
Given, $\frac{d x}{d t}=4 \mathrm{~cm} / \mathrm{min}, x=8 \mathrm{~cm}$
We know that

$$
\begin{aligned}
& \text { Area }(A)=x^{2} \\
& \frac{d A}{d t}=2 \times \frac{d x}{d t} \\
& \left(\frac{d A}{d t}\right)_{8 \mathrm{~cm}}=2 \times(8)(4) \\
& \frac{d A}{d t}=64 \mathrm{~cm}^{2} / \mathrm{min}
\end{aligned}
$$

Area increases at a rate of $64 \mathrm{~cm}^{2} / \mathrm{min}$.

## Derivatives as a Rate Measurer Ex 13.2 Q2

Let edge of the cube is $x \mathrm{~cm}$.

$$
\frac{d x}{d t}=3 \mathrm{~cm} / \mathrm{sec}, x=10 \mathrm{~cm}
$$

Let $V$ be volume of cube,

$$
\begin{aligned}
& V=x^{3} \\
& \begin{aligned}
\frac{d^{\prime} V}{d t} & =3 x^{2} \frac{d x}{d t} \\
& =3(10)^{2} \times(3) \\
& =900 \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
\end{aligned}
$$

So,
Volume increases at a rate of $900 \mathrm{~cm}^{3} / \mathrm{sec}$.

## Derivatives as a Rate Measurer Ex 13.2 Q3

Let $x$ be the side of the square.

$$
\text { Here, } \begin{aligned}
\frac{d x}{d t} & =0.2 \mathrm{~cm} / \mathrm{sec} \\
P & =4 x \\
\frac{d P}{d t} & =4 \frac{d x}{d t} \\
& =4 \times(0.2) \\
\frac{d P}{d t} & =0.8 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

So, perimeter increases at the rate of $0.8 \mathrm{~cm} / \mathrm{sec}$.

The circumference of a circle (C) with radius $(r)$ is given by
$C=2 \pi r$.

Therefore, the rate of change of circumference (C) with respect to time $(t)$ is given by,
$\frac{d C}{d t}=\frac{d C}{d r} \cdot \frac{d r}{d t}$ (By chain rule)
$=\frac{d}{d r}(2 \pi r) \frac{d r}{d t}$
$=2 \pi \cdot \frac{d r}{d t}$

It is given that $\frac{d r}{d t}=0.7 \mathrm{~cm} / \mathrm{s}$.
Hence, the rate of increase of the circumference is $2 \pi(0.7)=1.4 \pi \mathrm{~cm} / \mathrm{s}$.

## Derivatives as a Rate Measurer Ex $\mathbf{1 3 . 2} \mathbf{Q 5}$

Let $r$ be the radius of the spherical soap bubble.
Here, $\frac{d r}{d t}=0.2 \mathrm{~cm} / \mathrm{sec}, r=7 \mathrm{~cm}$
Surface Area $(A)=4 \pi r^{2}$

$$
\begin{aligned}
& \frac{d A}{d t}=4 \pi(2 r) \frac{d r}{d t} \\
& \begin{aligned}
\left(\frac{d A}{d t}\right)_{r-7} & =4 \pi(2 \times 7) \times 0 \\
& =11.2 \pi \mathrm{~cm}^{2} / \mathrm{sec} .
\end{aligned}
\end{aligned}
$$

So, area of bubble increases at the rate of $11.2 \pi \mathrm{~cm}^{2} / \mathrm{sec}$.

## Derivatives as a Rate Measurer Ex 13.2 Q6

The volume of a sphere $(V)$ with radius $(r)$ is given by,
$V=\frac{4}{3} \pi r^{3}$
$\therefore$ Rate of change of volume $(V)$ with respect to time $(t)$ is given by,
$\frac{d V}{d t}=\frac{d V}{d r} \cdot \frac{d r}{d t}$ [By chain rule]
$=\frac{d}{d r}\left(\frac{4}{3} \pi r^{3}\right) \cdot \frac{d r}{d t}$
$=4 \pi r^{2} \cdot \frac{d r}{d t}$
It is given that $\frac{d V}{d t}=900 \mathrm{~cm}^{3} / \mathrm{s}$.
$\therefore 900=4 \pi r^{2} \cdot \frac{d r}{d t}$
$\Rightarrow \frac{d r}{d t}=\frac{900}{4 \pi r^{2}}=\frac{225}{\pi r^{2}}$

Therefore, when radius $=15 \mathrm{~cm}$,
$\frac{d r}{d t}=\frac{225}{\pi(15)^{2}}=\frac{1}{\pi}$

Hence, the rate at which the radius of the balloon increases when the radius is 15 cm is $\frac{1}{\pi} \mathrm{~cm} / \mathrm{s}$.

## Derivatives as a Rate Measurer Ex 13.2 Q7

Let $r$ be the radius of the air bubble.
Here, $\frac{d r}{d t}=0.5 \mathrm{~cm} / \mathrm{sec}, r=1 \mathrm{~cm}$
Volume $(V)=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} \\
& =4 \pi r^{2} \frac{d r}{d t} \\
& =4 \pi(1)^{2} \times(0.5) \\
\frac{d V}{d t} & =2 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

So, volume of air bubble increases at the rate of $2 \pi \mathrm{~cm}^{3} / \mathrm{sec}$.

## Derivatives as a Rate Measurer Ex 13.2 Q8



Let $A B$ be the lamp-post. Suppose at time $t$, the $m a n C D$ is at a distance of $x$ meters from the lamp-post and $y$ meters be the length of his shadow CB.

Here, $\frac{d x}{d t}=5 \mathrm{~km} / \mathrm{hr}$

$$
C D=2 \mathrm{~m}, A B=6 \mathrm{~m}
$$

Here, $\triangle A B E$ and $\triangle C D E$ are similar, so

$$
\begin{aligned}
& \frac{A B}{C D}=\frac{A E}{C E} \\
& \frac{6}{2}=\frac{x+y}{y} \\
& 3 y=x+y \\
& 2 y=x \\
& 2 \frac{d y}{d t}=\frac{d x}{d t} \\
& \frac{d y}{d t}=\frac{5}{2} \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

So, the length of his shadow increases at the rate of $\frac{5}{2} \mathrm{~km} / \mathrm{hr}$.

## Derivatives as a Rate Measurer Ex 13.2 Q9

The area of a circle $(A)$ with radius $(r)$ is given by $A=\pi r^{2}$

Therefore, the rate of change of area (A) with respect to time $(t)$ is given by,
$\frac{d A}{d t}=\frac{d}{d t}\left(\pi r^{2}\right)=\frac{d}{d r}\left(\pi r^{2}\right) \frac{d r}{d t}=2 \pi r \frac{d r}{d t}$ [By chain rule $]$

It is given that $\frac{d r}{d r}=4 \mathrm{~cm} / \mathrm{s}$.

Thus, when $r=10 \mathrm{~cm}$,
$\frac{d A}{d t}=2 \pi(10(4)=80 \pi$

Hence, when the radius of the circular wave is 8 cm , the enclosed area is increasing at the rate of $80 \pi \mathrm{~cm}^{2} / \mathrm{s}$

## Derivatives as a Rate Measurer Ex 13.2 Q10



Let $A B$ be the height of pole. Suppose at time $t$, the $m$ an $C D$ is at a distance of $x$ meters from the lamp-post and $y$ meters be the length of his shadow $C E$, then

$$
\frac{d x}{d t}=1.1 \mathrm{~m} / \mathrm{sec}
$$

$\triangle A B E$ is similar to $\triangle C D E$,

$$
\begin{aligned}
& \frac{A B}{C D}=\frac{A E}{C E} \\
& \frac{600}{160}=\frac{x+y}{y} \\
& \frac{15}{4}=\frac{x+y}{y} \\
& 15 y=4 x+4 y \\
& 11 y=4 x \\
& 11 \frac{d y}{d x}=4 \frac{d x}{d t} \\
& \frac{d y}{d t}=\frac{4}{11}(1.1) \\
& \frac{d y}{d t}=0.4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Rate of increasing of shadow $=0.4 \mathrm{~m} / \mathrm{sec}$.

Let $A B$ be the height of source of light. Suppose at time $t$, the man $C D$ is at a distance of $x$ meters from the lamp-post and $y$ meters be the length of his shadow $C E$, then

$$
\frac{d x}{d t}=2 \mathrm{~m} / \mathrm{sec}
$$

$\triangle A B E$ is similar to $\triangle C D E$,
$\frac{A B}{C D}=\frac{A E}{C E}$
$\frac{900}{180}=\frac{x+y}{y}$
$5 y=x+y$
$4 y=x$
$4 \frac{d y}{d t}=\frac{d x}{d t}$
$\frac{d y}{d t}=\frac{2}{4}$
$=\frac{1}{2}$
$\frac{d y}{d t}=0.5 \mathrm{~m} / \mathrm{sec}$

So, rate of increase of shadow is $0.5 \mathrm{~m} / \mathrm{sec}$.

The diagram of the problem is shown below



Let $A B$ be the position of the ladder, at time $t$, such that $O A=x$ and $O B=y$

Here,

$$
\begin{aligned}
& O A^{2}+O B^{2}=A B^{2} \\
& x^{2}+y^{2}=(13)^{2} \\
& x^{2}+y^{2}=169
\end{aligned}
$$

And $\frac{d x}{d t}=1.5 \mathrm{~m} / \mathrm{sec}$
From figure, $\tan \theta=\frac{y}{x}$

Differentiating equation (i) with respect to $t$,

$$
\begin{aligned}
& 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0 \\
& 2(1.5) x+2 y \frac{d y}{d t}=0 \\
& 3 x+2 y \frac{d y}{d t}=0 \\
& \frac{d y}{d t}=-\frac{3 x}{2 y}
\end{aligned}
$$

Differentiating equation (ii) with respect to $t$,

$$
\begin{aligned}
\sec ^{2} \theta \frac{d \theta}{d t} & =\frac{d \frac{d y}{d t}-y \frac{d x}{d t}}{x^{2}} \\
& =\frac{x \times\left(-\frac{3 x}{2 y}\right)-y(1.5)}{x^{2}} \\
& =\frac{-1.5 x^{2}-1.5 y^{2}}{y x^{2}} \\
\frac{d \theta}{d t} & =\frac{-1.5\left(x^{2}+y^{2}\right)}{x^{2} y \sec ^{2} \theta} \\
& =\frac{-1.5\left(x^{2}+y^{2}\right)}{x^{2} y\left(1+\tan ^{2} \theta\right)} \\
\frac{d \theta}{d t} & =\frac{-1.5\left(x^{2}+y^{2}\right)}{x^{2} y\left(1+\frac{y^{2}}{x^{2}}\right)} \\
& =\frac{-1.5\left(x^{2}+y^{2}\right) \times x^{2}}{x^{2} y\left(x^{2}+y^{2}\right)} \\
& =\frac{-1.5}{y}(\sqrt{y}) \\
& =\frac{-1.5}{\sqrt{169-x^{2}}} \\
& =\frac{-1.5}{\sqrt{169-144}} \\
& =\frac{-1.5}{5} \\
& =-0.3 \mathrm{radian} / \mathrm{sec}^{2}
\end{aligned}
$$

So, angle between ladder and ground is decreasing at the rate of 0.3 radian $/ \mathrm{sec}$.

Here, ourve is

$$
y=x^{2}+2 x
$$

And $\frac{d y}{d t}=\frac{d x}{d t}$
$\Rightarrow \quad \frac{d y}{d t}=2 x \frac{d x}{d t}+2 \frac{d x}{d t}$
$\Rightarrow \quad \frac{d y}{d t}=\frac{d x}{d t}(2 x+2)$

Using equation (i),

$$
\begin{aligned}
2 x+2 & =1 \\
2 x & =-1 \\
x & =-\frac{1}{2}
\end{aligned}
$$

So, $\quad y=x^{2}+2 x$

$$
\begin{aligned}
& =\left(-\frac{1}{2}\right)^{2}+2\left(-\frac{1}{2}\right) \\
& =\frac{1}{4}-1 \\
y & =-\frac{3}{4}
\end{aligned}
$$

So, required points is $\left(-\frac{1}{2},-\frac{3}{4}\right)$

## Derivatives as a Rate Measurer Ex 13.2 Q14

Here,

$$
\frac{d x}{d t}=4 \text { units } / \mathrm{sec}, \text { and } x=2
$$

And, $y=7 x-x^{3}$

Slope of the curve (S) $=\frac{d y}{d x}$

$$
\begin{aligned}
s & =7-3 x^{2} \\
\frac{d s}{d t} & =-6 x \frac{d x}{d t} \\
& =-6(2)(4) \\
& =-48 \text { units } / \mathrm{sec}
\end{aligned}
$$

So, slope is decreasing at the rate of 48 units $/ \mathrm{sec}$.

Here,

$$
\begin{equation*}
\frac{d y}{d t}=3 \frac{d x}{d t} \tag{i}
\end{equation*}
$$

And, $y=x^{3}$
$\frac{d y}{d t}=3 x^{2} \frac{d x}{d t}$
$3 \frac{d x}{d t}=3 x^{2} \frac{d x}{d t}$
$3 x^{2}=3$
$x^{2}=1$
$x= \pm 1$

Put $x=1 \Rightarrow y=(1)^{3}=1$

Put $x=-1 \Rightarrow y=(-1)^{3}=-13$

So, the required points are $(1,1)$ and $(-1,-1)$.
Derivatives as a Rate Measurer Ex 13.2 Q16(i)
Here,

$$
\begin{aligned}
& 2 \frac{d(\sin \theta)}{d t}=\frac{d \theta}{d t} \\
& 2 \times \cos \theta \frac{d \theta}{d t}=\frac{d \theta}{d t} \\
& 2 \cos \theta=1 \\
& \cos \theta=\frac{1}{2}
\end{aligned}
$$

$$
\theta=\frac{\pi}{3} .
$$

Derivatives as a Rate Measurer Ex 13.2 Q16(ii)

$$
\begin{aligned}
& \frac{d \theta}{d t}=-2 \frac{d}{d t}(\cos \theta) \\
& \frac{d \theta}{d t}=-2(-\sin \theta) \frac{d \theta}{d t} \\
& 1=2 \sin \theta \\
& \sin \theta=\frac{1}{2} \\
& \theta=\frac{\pi}{6}
\end{aligned}
$$



Let $C D$ be the wall and $A B$ is the ladder
Here, $A B=6$ meter and $\left(\frac{d x}{d t}\right)_{x=4}=0.5 \mathrm{~m} / \mathrm{sec}$.

From figure,

$$
\begin{aligned}
& A B^{2}=x^{2}+y^{2} \\
& (6)^{2}=x^{2}+y^{2} \\
& 36=x^{2}+y^{2}
\end{aligned}
$$

Differentiating it with respect to $t$,

$$
\begin{align*}
& 0=2 x \frac{d x}{d t}+2 y \frac{d y}{d t} \\
& \begin{aligned}
\frac{d y}{d t}=-\frac{x}{y} & \frac{d x}{d t}
\end{aligned}  \tag{i}\\
& \begin{aligned}
\left(\frac{d y}{d t}\right)_{x-4} & =\frac{4(0.5)}{\sqrt{36-x^{2}}} \\
& =-\frac{2}{\sqrt{36-16}} \\
& =-\frac{2}{2 \sqrt{5}} \\
& =-\frac{1}{\sqrt{5}} \mathrm{~m} / \mathrm{sec}
\end{aligned}
\end{align*}
$$

So, ladder top is sliding at the rate of $\frac{1}{\sqrt{5}} \mathrm{~m} / \mathrm{sec}$.

Now, to find $x$ when $\frac{d x}{d t}=-\frac{d y}{d t}$
From equation (i),

$$
\begin{aligned}
& \frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t} \\
& -\frac{d x}{d t}=-\frac{x}{y} \frac{d x}{d t} \\
& x=y
\end{aligned}
$$

Now,

$$
\begin{aligned}
& 36=x^{2}+y^{2} \\
& 36=x^{2}+x^{2} \\
& 2 x^{2}=36 \\
& x^{2}=18 \\
& x=3 \sqrt{2} \mathrm{~m}
\end{aligned}
$$

When foot and top are moving at the same rate, foot of wall is $3 \sqrt{2}$ meters away from the wall


Let height of the cone is $x \mathrm{~cm}$, and radius of sphere is $r \mathrm{~cm}$.

Here given,

$$
\begin{align*}
& x=2 r  \tag{i}\\
& h=x+r \\
& h=2 r+r \\
& h=3 r  \tag{ii}\\
& v=\text { volume of cone }+ \text { volume of hemisphere } \\
&=\frac{1}{3} \pi r^{2} x+\frac{2}{3} \pi r^{3} \\
&=\frac{1}{3} \pi r^{2}(2 r)+\frac{2}{3} \pi r^{3} \\
& v=\frac{2}{3} \pi r^{3}+\frac{2}{3} \pi r^{3} \\
&=\frac{4}{3} \pi r^{3} \\
&=\frac{4}{3} \pi\left(\frac{h}{3}\right)^{3} \\
& v=\frac{4}{81} \pi h^{3} \\
& \frac{d v}{d h}=\frac{4}{81} \pi \times 3 h^{2} \\
&\left(\frac{d v}{d h}\right)_{h-9}=\frac{12}{81} \pi(9)^{2} \\
&\left(\frac{d v}{d h}\right)_{h-9}=12 \pi \mathrm{~cm}^{2}
\end{align*}
$$

Volume is changing at the rate $12 \pi \mathrm{~cm}^{2}$ with respect to total height.


Let $\alpha$ be the semi vertical angle of the cone $C A B$ whose height $C O$ is 10 m and radius $O B=5 \mathrm{~m}$.

Now,

$$
\begin{aligned}
\tan \alpha & =\frac{O B}{C O} \\
& =\frac{5}{10} \\
\tan \alpha & =\frac{1}{2}
\end{aligned}
$$

Let $V$ be the volume of the water in the cone, then

$$
\begin{aligned}
& v=\frac{1}{3} \pi\left(O^{\prime} B^{\prime}\right)^{2}\left(C O^{\prime}\right) \\
&=\frac{1}{3} \pi(h \tan \alpha)^{2}(h) \\
& v=\frac{1}{3} \pi h^{3} \tan ^{2} \alpha \\
& v=\frac{\pi}{12} h^{2} \\
& \begin{aligned}
\frac{d v}{d t} & =\frac{\pi}{12} 3 h^{2} \frac{d h}{d t} \\
\pi & =\frac{\pi}{4} h^{2} \frac{d h}{d t}
\end{aligned} {\left[\because \tan \alpha=\frac{1}{2}\right] } \\
& \begin{aligned}
\frac{d h}{d t} & =\frac{4}{h^{2}}
\end{aligned} \\
& \begin{aligned}
\left(\frac{d h}{d t}\right)_{2.5} & =\frac{4}{(2.5)^{2}} \\
& =\frac{4}{6.25}
\end{aligned} {\left[\because \frac{d^{\prime} V}{d t}=m^{3} / \mathrm{min}\right] }
\end{aligned}
$$

So, water level is rising at the rate of $0.64 \mathrm{~m} / \mathrm{min}$.

Let $A B$ be the lamp-post. Suppose at time $t$, the $m a n C D$ is at a distance $x \mathrm{~m}$. from the lamp-post and $y \mathrm{~m}$ be the length of the shadow $C E$.

Here, $\quad \frac{d x}{d t}=6 \mathrm{~km} / \mathrm{hr}$

$$
C D=2 \mathrm{~m}, A B=6 \mathrm{~m}
$$

Here, $\triangle A B E$ and $\triangle C D E$ are similar

So, $\quad \frac{A B}{C D}=\frac{A E}{C E}$

$$
\frac{6}{2}=\frac{x+y}{y}
$$

$$
3 y=x+y
$$

$$
2 y=x
$$

$$
2 \frac{d y}{d t}=\frac{d x}{d t}
$$

$$
2 \frac{d y}{d t}=6
$$

$$
\frac{d y}{d t}=3 \mathrm{~km} / \mathrm{hr}
$$

So, length of his shadow increases at the rate of $3 \mathrm{~km} / \mathrm{hr}$.

The diagram of the problem is shown below


Derivatives as a Rate Measurer Ex 13.2 Q21

Here, $\frac{d A}{d t}=2 \mathrm{~cm}^{2} / \mathrm{sec}$

To find $\frac{d V}{d t}$ at $r=6 \mathrm{~cm}$

$$
\begin{aligned}
& A=4 \pi r^{2} \\
& \frac{d A}{d t}=8 \pi r \frac{d r}{d t} \\
& 2=8 \pi r \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{1}{4 \pi r} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Now, $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
\frac{d^{\prime} V}{d t} & =4 \pi r^{2} \frac{d r}{d t} \\
& =4 \pi r^{2}\left(\frac{1}{4 \pi r}\right) \\
& =r \\
\frac{d^{\prime} V}{d t} & =6 \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
$$

So, volume of bubble is increasing at the rate of $6 \mathrm{~cm}^{3} / \mathrm{sec}$.

## Derivatives as a Rate Measurer Ex 13.2 Q22

Here, $\frac{d r}{d t}=2 \mathrm{~cm} / \mathrm{sec}, \frac{d h}{d t}=-3 \mathrm{~cm} / \mathrm{sec}$

To find $\frac{d^{\prime} V}{d t}$ when $r=3 \mathrm{~cm}, h=5 \mathrm{~cm}$

Now, $V=$ volume of cylinder

$$
\begin{aligned}
& V=\pi r^{2} h \\
& \begin{aligned}
\frac{d V}{d t} & =\pi\left[2 r \frac{d r}{d t} \times h+r^{2} \frac{d h}{d t}\right] \\
& =\pi\left[2(3)(2)(5)+(3)^{2}(-3)^{2}\right] \\
& =\pi[60-27] \\
\frac{d V}{d t} & =33 \pi \mathrm{~cm}^{3} / \mathrm{sec}
\end{aligned}
\end{aligned}
$$

So, volume of cylinder is increasing at the rate of $33 \pi \mathrm{~cm}^{3} / \mathrm{sec}$.

Let $V$ be volume of sphere with miner radius $r$ and onter radius $R$, then

$$
\begin{aligned}
& V=\frac{4}{3} \pi\left(R^{3}-r^{3}\right) \\
& \frac{d^{\prime} V}{d t}=\frac{4}{3} \pi\left(3 R^{2} \frac{d R}{d t}-3 r^{2} \frac{d r}{d t}\right) \\
& 0=\frac{4 \pi}{3} 3\left(R^{2} \frac{d R}{d t}-r^{2} \frac{d r}{d t}\right) \\
& R^{2} \frac{d R}{d t}=r^{2} \frac{d r}{d t} \\
& (8)^{2} \frac{d R}{d t}=(4)^{2}(1) \\
& \frac{d R}{d t}=\frac{16}{64} \\
& \frac{d R}{d t}=\frac{1}{4} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Rate of increasing of onter radius $=\frac{1}{4} \mathrm{~cm} / \mathrm{sec}$.


Let $\alpha$ be the semi vertical angle of the cone $C A B$ whose height $C O$ is half of radius $O B$.

Now,

$$
\begin{aligned}
\tan \alpha & =\frac{O B}{C O} \\
& =\frac{O B}{2 O B} \\
\tan \alpha & =\frac{1}{2}
\end{aligned}
$$

Let $V$ be the volume of the sand in the cone

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi\left(\frac{h}{2}\right)^{2} h \\
& =\frac{\pi}{12} h^{3} \\
\frac{d V}{d t} & =\frac{3 \pi}{12} h^{2} \frac{d h}{d t} \\
50 & =\frac{3 \pi}{12} h^{2} \frac{d h}{d t} \\
\frac{d h}{d t} & =\frac{200}{\pi h^{2}} \\
& =\frac{200}{\pi(5)^{2}} \\
\frac{d h}{d t} & =\frac{8}{3.14} \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Rate of increasing of height $=\frac{8}{\pi} \mathrm{~cm} / \mathrm{min}$


Let $C$ be the position of kite and $A C$ be the string.

$$
\text { Here, } \begin{array}{ll} 
& y^{2}=x^{2}+(120)^{2} \\
& 2 y \frac{d y}{d t}=2 x \frac{d x}{d t} \\
& y \frac{d y}{d t}=x \frac{d x}{d t} \\
& \frac{d y}{d t}=\frac{x}{y}(52) \tag{ii}
\end{array}
$$

$\left[\because \frac{d x}{d t}=52 \mathrm{~m} / \mathrm{sec}\right]$

From equation (i),

$$
\begin{aligned}
& y^{2}=x^{2}+(120)^{2} \\
& (130)^{2}=x^{2}+(120)^{2} \\
& x^{2}=16900-14400 \\
& x^{2}=2500 \\
& x=50
\end{aligned}
$$

Using equation (ii),

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{x}{y}(52) \\
& =\frac{50}{130}(52) \\
& =20 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

So, string is being paid out at the rate of $20 \mathrm{~m} / \mathrm{sec}$.

Here,

$$
\begin{equation*}
\frac{d y}{d t}=2 \frac{d x}{d t} \tag{i}
\end{equation*}
$$

and

$$
y=\left(\frac{2}{3}\right) x^{3}+1
$$

$$
\frac{d y}{d t}=\frac{2}{3} \times 3 x^{2} \frac{d x}{d t}
$$

$2 \frac{d x}{d t}=2 x^{2} \frac{d x}{d t}$ [Using equation (i)]
$\Rightarrow \quad x= \pm 1$

$$
y=\left(\frac{2}{3}\right) x^{3}+1
$$

Put $x=1, \quad y=\frac{2}{3}+1=\frac{5}{3}$
Put $x=-1, \quad y=\frac{2}{3}(-1)+1=\frac{1}{3}$

So, required point $\left(1, \frac{5}{3}\right)$ and $\left(-1, \frac{1}{3}\right)$
Derivatives as a Rate Measurer Ex 13.2 Q27
Here,

$$
\frac{d x}{d t}=\frac{d y}{d t}
$$

and

> curve is

$$
y^{2}=8 x
$$

$$
2 y \frac{d y}{d t}=8 \frac{d x}{d t}
$$

$$
2 y=8
$$

[using equation (i)]
$\Rightarrow \quad(4)^{2}=8 x$
$\Rightarrow \quad x=2$

So, required point $=(2,4)$.
Derivatives as a Rate Measurer Ex 13.2 Q28

Let edge of cube be $\times \mathrm{cm}$ Here,

$$
\frac{d^{\prime} V}{d t}=9 \mathrm{~cm}^{3} / \mathrm{sec}
$$

To find $\frac{d A}{d t}$ when $x=10 \mathrm{~cm}$

We know that

$$
\begin{aligned}
& V=x^{3} \\
& \frac{d V}{d t}=3 x^{2}\left(\frac{d x}{d t}\right) \\
& 9=3(10)^{2} \frac{d x}{d t} \\
& \frac{d x}{d t}=\frac{3}{100} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Now, $A=6 x^{2}$

$$
\begin{aligned}
\frac{d A}{d t} & =12 x \frac{d x}{d t} \\
& =12(10)\left(\frac{3}{100}\right) \\
\frac{d A}{d t} & =3.6 \mathrm{~cm}^{2} / \mathrm{sec} .
\end{aligned}
$$

Derivatives as a Rate Measurer Ex 13.2 Q29
Given, $\frac{d V}{d t}=25 \mathrm{~cm}^{3} / \mathrm{sec}$

To find $\frac{d A}{d t}$ when $r=5 \mathrm{~cm}$

We know that,

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} \\
& 25=4 \pi(5)^{2} \frac{d r}{d t} \\
& \frac{d r}{d t}=\frac{1}{4 \pi} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Now, $A=4 \pi r^{2}$

$$
\begin{aligned}
\frac{d A}{d t} & =8 \pi r \frac{d r}{d t} \\
& =8 \pi(5)\left(\frac{1}{4 \pi}\right) \\
\frac{d A}{d t} & =10 \mathrm{~cm}^{2} / \mathrm{sec}
\end{aligned}
$$

Given,

$$
\begin{aligned}
& \frac{d x}{d t}=-5 \mathrm{~cm} / \mathrm{min} \\
& \frac{d y}{d t}=4 \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

(i) To find $\frac{d P}{d t}$ when $x=8 \mathrm{~cm}, y=6 \mathrm{~cm}$

$$
\begin{aligned}
p & =2(x+y) \\
\frac{d p}{d t} & =2\left(\frac{d x}{d t}+\frac{d y}{d t}\right) \\
& =2(-5+4) \\
\frac{d p}{d t} & =-2 \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

(ii) To find $\frac{d A}{d t}$ when $x=8 \mathrm{~cm}$ and $y=6 \mathrm{~cm}$

$$
\begin{aligned}
A & =x y \\
\frac{d A}{d t} & =x \frac{d y}{d t}+y \frac{d x}{d t} \\
& =(8)(4)+(6)(-5) \\
& =32-30 \\
\frac{d A}{d t} & =2 \mathrm{~cm}^{2} / \mathrm{min} .
\end{aligned}
$$

## Derivatives as a Rate Measurer Ex 13.2 Q31

Let $r$ be the radius of the given disc and $A$ be its area.
Then, $\quad A=\pi r^{2}$
$\therefore \quad \frac{d A}{d t}=2 \pi r \frac{d r}{d t}$ [by chain rule]

Now, the approximate increase ofradius $=d r=\frac{d r}{d t} \Delta t=0.05 \mathrm{~cm} / \mathrm{sec}$
$\therefore$ the approximate rate of increase in areais given by

$$
d A=\frac{d A}{d t}(\Delta t)=2 \pi r\left(\frac{d r}{d t} \Delta t\right)=2 \pi(3.2)(0.05)=0.320 \pi \mathrm{~cm}^{3} / \mathrm{s}
$$

