# RD Sharma 

 Solutions
## Class 11 Maths

Chapter 31

$$
\text { Ex } 31.6
$$

## Mathematical Reasoning Ex 31.6 Q1

The statement is:
" 100 is multiple of 4 and 5 "
We know that 100 is a multiple of 4 as well as 5 . So, $p$ is true statement.
Hence, the statement is true i.e. the statement " $p$ "
is a valid statement.

The statement is:
"125 is multiple of 5 and 7"
Since 125 is a multiple of 5 but it is not a multiple of 7 . So, $q$ is not a true statement i.e. the statement " $q$ " is not a valid statement.

The statement is
r: 60 is multiple of 3 or 5
is a compound statement of the following statements:
$p: 60$ is multiple of 3
$\mathrm{q}: 60$ is multiple of 5

Suppose $q$ is false. That is, 60 is not a multiple of 5 . Clearly $p$ is true.

Thus, if we assume that $q$ is false, then $p$ is true,
Hence, the statement is true i.e. the statement " $r$ " is a valid statement.

## Mathematical Reasoning Ex 31.6 Q2

Let $q$ and $r$ be the statements given by $q: x$ and $y$ are odd integers.
$r: x+y$ is an even integer.
Then, the given statement is
if $q$, then $r$.
Direct Method: Let $q$ be true. Then,
$q$ is true.
$\Rightarrow \quad x$ and $y$ are odd integers
$\Rightarrow \quad x=2 m+1, y=2 n+1$ for some integers $m, n$
$\Rightarrow \quad x+y=(2 m+1)+(2 n+1)$
$\Rightarrow \quad x+y=(2 m+2 n+2)$
$\Rightarrow \quad x+y=2(m+n+1)$
$\Rightarrow \quad x+y$ is an even integer
$\Rightarrow \quad r$ is true.

Thus, $q$ is true $\Rightarrow r$ is true.
Hence, "if $q$, then $r$ " is a true statement.

Let $r$ and $s$ be two statements given by
$r: x y$ is an even integer.
$s$ : At least one of $x$ and $y$ is an even integer

Let $s$ be not true. Then,
$s$ is not true
$\Rightarrow \quad$ Both $x$ and $y$ are odd integers

Let $x=2 n+1$ and $y=2 m+1$ for some integers $n$ and $m$. Then,
$\Rightarrow \quad x y=(2 n+1)(2 m+1)$ for some integers $n$ and $m$.
$\Rightarrow \quad x y=4 n m+2(n+m)+1$ for some integers $n$ and $m$.
$\Rightarrow \quad x y$ is an odd integer
$\Rightarrow \quad x y$ is not an even integer
$\Rightarrow \quad-r$ is true
Thus, $-s$ is true $\Rightarrow-r$ is true
Hence, the given statement is true.

## Mathematical Reasoning Ex 31.6 Q3

Let $q$ and $r$ be the statements given
$q: x$ is a real number such that $x^{3}+x=0$.
$r: x$ is 0 .
Then, $p$ : if $q$, then $r$.
(i) Direct Method: Let $q$ be true. Then,
$q$ is true
$\Rightarrow \quad x$ is a real number such that $x^{3}+x=0$
$\Rightarrow \quad x$ is a real number such that $x\left(x^{2}+1\right)=0$
$\Rightarrow \quad x=0$
$\Rightarrow \quad r$ is true.
Thus, $q$ is true $\Rightarrow r$ is true.
Hence, $p$ is true.
(ii) Method of contrapositive : Let r be not true. Then,
$r$ is not true.
$\Rightarrow \quad x \neq 0, x \in R$
$\Rightarrow \quad x\left(x^{2}+1\right) \neq 0, x \in R$
$\Rightarrow \quad q$ is not true
Thus, $-r=-q$.
Hence, $p: q \Rightarrow r$ is true.
(iii) Method of contradiction: If possible, let $p$ be not true. Then, $p$ is not true
$\Rightarrow \quad-p$ is true
$\Rightarrow \quad-(p \Rightarrow r)$ is true
$\Rightarrow \quad q$ and $-r$ is true
$\Rightarrow \quad x$ is a real number such that $x^{3}+x=0$ and $x \geqslant 0$
$\Rightarrow \quad x=0$ and $x \neq 0$
This a contradiction.
Hence, $p$ is true.

## Mathematical Reasoning Ex 31.6 Q4

Let $q$ and $r$ be the statements given by
$q$ : If $x$ is an integer and $x^{2}$ is odd
$r: x$ is an odd integer.

Then, $p:$ "If $q$, then $r$."
If possible, let $r$ be false. Then,
$r$ is false
$\Rightarrow \quad x$ is not an odd integer
$\Rightarrow \quad x$ is an even integer
$\Rightarrow \quad x=(2 n)$ for some integer $n$
$\Rightarrow \quad x^{2}=4 n^{2}$
$\Rightarrow \quad x^{2}$ is an even integer
$\Rightarrow \quad q$ is false.

Thus, $r$ is false $\Rightarrow q$ is false.
Hence, $p$ : "if $q$, then $r$ " is a true statement.

## Mathematical Reasoning Ex 31.6 Q5

The given statement can be re-written as
"The necessary and sufficient condition that the integer $n$ is even is $n^{2}$ must be even"
Let p and q be the statements given by
$p$ : the integer $n$ is even.
$q: n^{2}$ is even.
The given statement is
"p if and only if $q$ "
In order to check its validity, we have to check the validity of the folfowing statements.
(i) "If $p$, then $q$ "
(ii) "if $q$, then $p$ "

Checking the validity of "if $p$, then $q$ "
The statement "if $p$, then $q$ " is given by:
"if the integer $n$ is even, then $n^{2}$ is even"
Let us assume that $n$ is even. Then,
$n=2 m$, where $m$ is an integer
$\Rightarrow \quad n^{2}=(2 m)^{2}$
$\Rightarrow \quad n^{2}=4 m^{2}$
$\Rightarrow \quad n^{2}$ is an even integer
Thus, $n$ is even $\Rightarrow n^{2}$ is even
$\therefore \quad$ "if $p$, then $q$ " is true.
Checking the validity of "if $q$, then $p$ ":
"if $n$ is an integer and $n^{2}$ is even, then $n$ is even"

To check the validity of this statemens, we will use contrapositive method.
So, let $n$ be an odd integer. Then,
$n$ is odd
$\Rightarrow \quad n=2 k+1$ for some integer $k$
$\Rightarrow \quad n^{2}=(2 k+1)^{2}$
$\Rightarrow \quad n^{2}=4 k^{2}+4 k+1$
$\Rightarrow \quad n^{2}$ is not an even integer.

Thus, $n$ is not even $\Rightarrow n^{2}$ is not even
"if $q$, then $p$ " is true.
Hence, " $p$ if and only if $q$ " is true.

## Mathematical Reasoning Ex 31.6 Q6

Consider a triangle $A B C$ with all angles equal. Then each angle of the triangle is equal to $60^{\circ}$. Hence, ABC is not an obtuse angle triangle.
Therefore the following statement is false.
$p$ : "if all the angles of a triangle are equal, then the trangle is an obtuse angled triangle".

## Mathematical Reasoning Ex 31.6 Q7

(i) False, B ecause, no radius of a circle is its chord.
(ii) False. Because, a chord does not have to pass through the centre.
(iii) True, Because a circle is an ellipse that has equal axes.
(iv) True. Because, for any two integers, if $x-y$ is positive then $-(x-y)$ is negative.
(v) False. Because square roots of prime numbers are irrational numbers.

## Mathematical Reasoning Ex 31.6 Q8

The argument used to check the validity of the given statement is not correct because it does not produce a contradiction.

