Congruence Of Triangles And Inequalities in a Triangle CHAPTER 9

Exercise - 9 (A)

Answer1)

Given: $A B|\mid C D$
To prove: i) 0 is the midpoint of AD
ii) $\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$

Proof:

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{DOC}$
$O A=O D$
$\angle \mathrm{AOB}=\angle \mathrm{COD}$
angles)

$\angle O A B=\angle O D C \quad$ (alternate angles)
Therefore;
$\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$
(A.A.S. criteria)

Hence;
$O B=O C$
(c.p.c.t.)

Hence proved.

Answer2)
Given: $A D=B D$
To prove: $C D$ bisects $A B$ i.e. $O A=O B$
Proof:
In $\triangle B O C$ and $\triangle A O D$

$A D=B C$
(Given)
$\angle \mathrm{OAD}=\angle \mathrm{OBC}=90$ (Given)
$\angle A O D=\angle B O C \quad$ (vertically opp. Angles)
Therefore $\triangle \mathrm{BOC} \cong \triangle \mathrm{AOD}$
(A..A.S criteria)

Hence $O A=O B$ i.e $C D$ bisects $A B$
Hence proved.

Answer3)

Given: (i) $1 \| m$
(ii) $\mathrm{p} \| \mathrm{q}$

To prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Proof:

Taking l parallel to m AC is the trAnswerversal
$\angle \mathrm{ACB}=\angle \mathrm{CAD} \quad$ (Alternate angles)
Taking p parallel to q
$\angle \mathrm{BAC}=\angle \mathrm{DCA} \quad$ (Alternate angles)
$\mathrm{AC}=\mathrm{AC}$ (common)

Therefore;
$\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}$
(ASA ctiteria)
Hence Proved.

Answer4) Given: $A B=A C$
To prove: (i) AD bisects BC (i.e. $\mathrm{BD}=\mathrm{DC}$)

(ii) $A D$ bisects $\angle A$

Prove:

In right angled $\triangle \mathrm{ADB}$ and ADC we have,
Hypotenuse $\mathrm{AB}=$ hypotenuse AC
(Given)
$\mathrm{AD}=\mathrm{AD}$
(common)
Therefore $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(RHS criteria)
Hence BD=DC
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$
Hence AD bisects $\angle \mathrm{A}$

Answer5)

Given: $\mathrm{BE}=\mathrm{CF}$
To Prove: i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
ii) $\mathrm{AB}=\mathrm{AC}$

Proof:
In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$
$\angle \mathrm{AEB}=\angle \mathrm{AFC}=90$
$\angle \mathrm{BAE}=\angle \mathrm{CAF}$
(Given)
(common)
$B E=C F$
(Given)
Therefore $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
(A.A.S Criteria)
$\mathrm{AB}=\mathrm{AC}$ (c.p.c.t)

Answer6)

Given:

(i) $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles in which $\mathrm{AB}=\mathrm{AC} \& \mathrm{BD}=\mathrm{DC}$.

To Prove:

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACP}$
(iii) AE bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AE is the perpendicular bisector of BC .

Proof:

(i) In $\triangle A B D$ and $\triangle A C D$,
$\mathrm{AD}=\mathrm{AD}$ (Common)
$\mathrm{AB}=\mathrm{AC}$ (Given).
$B D=C D$ (Given)
Therefore, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(SSS criteria)
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (С.P.C.T)
$\angle \mathrm{BAE}=\angle \mathrm{CAE}$
(ii) In $\triangle \mathrm{ABE} \& \triangle \mathrm{ACE}$
$\mathrm{AE}=\mathrm{AE}$ (Common)
$\angle \mathrm{BAE}=\angle \mathrm{CAE}$
(Proved above)
$\mathrm{AB}=\mathrm{AC}$ (Given)
Therefore,
$\triangle \mathrm{ABE} \cong \triangle \mathrm{ACE} \quad$ (SAS criteria).
(iii) $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (proved in part i)

Hence, AE bisects $\angle \mathrm{A}$.
also,
In $\triangle \mathrm{BED}$ and $\triangle \mathrm{CED}$
$\mathrm{ED}=\mathrm{ED}($ Common $)$
$B D=C D$ (Given)
$B E=C E$
$(\Delta \mathrm{ABE} \cong \Delta \mathrm{ACE}$ so by c.p.c.t)
Therefore, $\triangle \mathrm{BED} \cong \triangle \mathrm{CED} \quad$ (SSS criteria)
Thus,
$\angle \mathrm{BDE}=\angle \mathrm{CDE} \quad$ (c.p.c.t)
Hence, we can say that AE bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) $\angle \mathrm{BED}=\angle \mathrm{CED}$
(by CPCT as $\triangle \mathrm{BED} \cong \Delta \mathrm{CED}$)
Therefore;

$$
\begin{aligned}
& \mathrm{BE}=\mathrm{CE} \\
& \angle \mathrm{BED}+\angle \mathrm{CED}=180^{\circ}(\mathrm{BC} \text { is a straight line }) \\
& \Rightarrow 2 \angle \mathrm{BPD}=180^{\circ} \\
& \Rightarrow \angle \mathrm{BED}=90^{\circ}
\end{aligned}
$$

Hence, AE is the perpendicular bisector of BC .

Answer7)

Given: (i) $x=y$
(ii) $\mathrm{AB}=\mathrm{CB}$

To prove: $\mathrm{AE}=\mathrm{CD}$

Proof:

Consider the triangles AEB and CDB.
$\angle \mathrm{EBA}=\angle \mathrm{DBC} \angle \mathrm{EBA}=\angle \mathrm{DBC}$ (Common angle) ...(i)

Further, we have:
$\angle B E A=180-y$
$\angle B D C=180-x$
Since $x=y$,
we have:
$180-\mathrm{x}=180-\mathrm{y}$
$\Rightarrow \angle \mathrm{BEA}=\angle \mathrm{BDC}$
$\mathrm{AB}=\mathrm{CB} \quad$ (Given) ...(iii)
From (i), (ii) and (iii),
we have:
$\triangle \mathrm{BDC} \cong \triangle \mathrm{BEA}$ (AAS criterion)
$\therefore \mathrm{AE}=\mathrm{CD}$ (CPCT)
Hence, proved.

Answer8)

Given: (i) 1 is the bisector of an $\angle A$
(ii) BP and BQ are perpendiculars

To Prove: $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$

Proof:

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$
$\angle \mathrm{P}=\angle \mathrm{Q}$
(Right angles)
$\angle B A P=\angle B A Q$
(l is the bisector)
$A B=A B$
(Common)

$\triangle A P B \cong \triangle A Q B$
(A.A.S criteria)

Hence, Proved.
(ii) $\mathrm{BP}=\mathrm{BQ}($ By c.p.c.t)

Therefore,
B is equidistant from the arms of $\angle \mathrm{A}$

Answer9)

Given: AC bisects angles A and C.

To prove: (i) $A B=A D$
(ii) $\mathrm{CB}=\mathrm{CD}$

Proof:

$\Delta \mathrm{ABC}$ and $\triangle \mathrm{ADC}$,
we have:
$\angle \mathrm{CAB}=\angle \mathrm{CAD}$
$\angle \mathrm{BCA}=\angle \mathrm{DCA}$
$\mathrm{AC}=\mathrm{AC}($ common $)$
$\Delta \mathrm{ABC} \cong \triangle \mathrm{ADC}$

Therefore,
$A D=A B$
(c.p.c.t)
$C D=B C$
(c.p.c.t)

Answer10) Given: $A B=A C$
To prove: $\mathrm{AC}+\mathrm{AD}=\mathrm{BC}$

Proof:

Let $\mathrm{AB}=\mathrm{AC}=\mathrm{a}$ and $\mathrm{AD}=\mathrm{b}$

In a right angled triangle $\mathrm{ABC}, \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$\mathrm{BC}^{2}=\mathrm{a}^{2}+\mathrm{a}^{2}$

$B C=a \sqrt{2}$

Given $\mathrm{AD}=\mathrm{b}$, we get
$\mathrm{DB}=\mathrm{AB}-\mathrm{AD}$ or $\mathrm{DB}=\mathrm{a}-\mathrm{b}$

We have to prove that $A C+A D=B C$ or $(a+b)=a \sqrt{2}$.

By the angle bisector theorem, we get
$\mathrm{AD} / \mathrm{DB}=\mathrm{AC} / \mathrm{BC}$
$b /(a-b)=a / a \sqrt{2}$
$b /(a-b)=1 / \sqrt{ } 2$
$\mathrm{b}=(\mathrm{a}-\mathrm{b}) / \sqrt{2}$
$b \sqrt{2}=a-b$
$b(1+\sqrt{2})=a$
$b=a /(1+\sqrt{2})$
Rationalizing the denominator with $(1-\sqrt{2})$
$b=a(1-\sqrt{2}) /(1+\sqrt{2}) \times(1-\sqrt{2})$
$\mathrm{b}=\mathrm{a}(1-\sqrt{2}) /(-1)$
$\mathrm{b}=\mathrm{a}(\sqrt{2}-1)$
$b=a \sqrt{2}-a$
$b+a=a \sqrt{2}$
or $\mathrm{AD}+\mathrm{AC}=\mathrm{BC}[$ we know that $\mathrm{AC}=\mathrm{a}, \mathrm{AD}=\mathrm{b}$ and $\mathrm{BC}=\mathrm{a} \sqrt{2}$]

Hence it is proved.

Answer11)

Given: (i) $O A=O B$
(ii) $O P=0 Q$

To Prove: (i) $\mathrm{PX}=\mathrm{QX}$
(ii) $A X=B X$

Proof:

In $\triangle \mathrm{PBO}$ and $\triangle \mathrm{AOQ}$
$0 B=0 A$ (Given)
$O P=0 Q$
(Given)
$\angle O=\angle O$ (common)
Therefore;
$\Delta \mathrm{PBO} \cong \Delta \mathrm{QAO}$ (S.A.S criteria)
$\angle B=\angle A$ (C.P.C.T)
In $\triangle \mathrm{BXQ}$ and $\triangle \mathrm{AXP}$
$\angle \mathrm{B}=\angle \mathrm{A}$ (proved above)
$P X=Q X$
(C.P.C.T.)

Hence proved

Answer12)

Given: (i) ABC is an equilateral triangle,
(ii) $P Q \| A C$
(iii) $\mathrm{CR}=\mathrm{BP}$

To prove: QR bisects PC or PM = MC

Proof:

Since, $\triangle \mathrm{ABC}$ is equilateral triangle,
$\angle \mathrm{A}=\angle \mathrm{ACB}=60^{\circ}$
Since, $\mathrm{PQ} \| \mathrm{AC}$ and corresponding angles are equal,
$\angle \mathrm{BPQ}=\angle \mathrm{ACB}=60^{\circ}$
In $\triangle B P Q$,

$\angle \mathrm{B}=\angle \mathrm{ACB}=60^{\circ}$
$\angle B P Q=60^{\circ}$
Hence, $\triangle \mathrm{BPQ}$ is an equilateral triangle.
$\therefore \mathrm{PQ}=\mathrm{BP}=\mathrm{BQ}$
Since we have BP $=C R$,
We say that $P Q=C R$.
Consider the $\triangle \mathrm{PMQ}$ and $\triangle \mathrm{CMR}$,
$\angle \mathrm{PQM}=\angle \mathrm{CRM} \quad$ (alternate angles)
$\angle \mathrm{PMQ}=\angle \mathrm{CMR}$ (vertically opposite angles)
$P Q=C R \ldots$ from 1
$\Delta \mathrm{PMQ} \cong \Delta \mathrm{CMR}$
(AAS criteria)
$\therefore \mathrm{PM}=\mathrm{MC} \quad$ (c.p.c.t)
Hence proved.

Answer13)

Given: (i)AB ll DC
(ii) P is the midpoint of BC .

To Prove : (i) $A B=C Q$
(ii) $\mathrm{DQ}=\mathrm{DC}+\mathrm{AB}$
so, AB ll DQ
so, $\angle \mathrm{BAQ}=\angle \mathrm{DQA}$ (alternate angles)
or $\angle \mathrm{BAP}=\angle \mathrm{CQP}$
Now, in triangle ABP and triangle QCP,
$\angle \mathrm{BAP}=\angle \mathrm{CQP}$ (from (1))
$\angle \mathrm{BPA}=\angle \mathrm{CPQ}$ (vertically opposite angles)
$B P=C P$ (since P is the midpoint of $B C$)
so, triangle ABP congruent triangle QCP (by AAS congruency)
or $\mathrm{AB}=\mathrm{CQ}($ by CPCT $) \quad$ [proved]
again, $\mathrm{DQ}=\mathrm{DC}+\mathrm{CQ}=\mathrm{DC}+\mathrm{AB}$ (from (2)) [proved]

Answer14)

Given: ABCD is a square and $\mathrm{PB}=\mathrm{PD}$
To prove: CPA is a straight line

Proof:

$\triangle \mathrm{APD}$ and $\triangle \mathrm{APB}$,

DA $=A B . .$.
(as ABCD is square)
$\mathrm{AP}=\mathrm{AP} . .$.
$\mathrm{PB}=\mathrm{PD} . .$.
$\triangle \mathrm{APD} \cong \triangle \mathrm{APB}$
(SSS criteria)

Hence, we know that, corresponding parts of the congruent triangles are equal $\angle A P D=\angle A P B$

Now consider $\triangle \mathrm{CPD}$ and $\triangle \mathrm{CPB}$,
$\mathrm{CD}=\mathrm{CB} . . . \mathrm{ABCD}$ is square
$\mathrm{CP}=\mathrm{CP} \ldots$ common side
$P B=P D . .$. Given
Thus by SSS property of congruence,
$\Delta \mathrm{CPD} \cong \Delta \mathrm{CPB}$
$\angle \mathrm{CPD}=\angle \mathrm{CPB} .$. (C.P.C.T.)
Now,
Adding both sides of 1 and 2 ,
$\angle \mathrm{CPD}+\angle \mathrm{APD}=\angle \mathrm{APB}+\angle \mathrm{CPB}$
Angels around the point P add upto 360°
$\therefore \angle \mathrm{CPD}+\angle \mathrm{APD}+\angle \mathrm{APB}+\angle \mathrm{CPB}=360^{\circ}$
From 4,
$2(\angle \mathrm{CPD}+\angle \mathrm{APD})=360^{\circ}$
$\angle \mathrm{CPD}+\angle \mathrm{APD}=180^{\circ}$
This proves that CPA is a straight line.

Answer15) Given: In square $\mathrm{ABCD}, \triangle \mathrm{OAB}$ is an equilateral triangle.
To prove: $\triangle O C D$ is an isosceles triangle.

Proof:

$\because \angle \mathrm{DAB}=\angle \mathrm{CBA}=90^{\circ} \quad$ (Angles of square ABCD$)$
And, $\angle \mathrm{OAB}=0 \mathrm{BA}=60^{\circ} \quad$ (Angles of equilateral $\triangle \mathrm{OAB}$)

$\therefore \angle \mathrm{DAB}-\angle \mathrm{OAB}=\angle \mathrm{CBA}-\angle \mathrm{OBA}=90^{\circ}-60^{\circ}$
$\Rightarrow \angle \mathrm{OAD}=\angle \mathrm{OBC}=30^{\circ}$
$\because \angle \mathrm{DAB}=\angle \mathrm{CBA}=90^{\circ} \quad$ Angles of square ABCD
And, $\angle O A B=0 B A=60^{\circ}$
Angles of equilateral $\triangle \mathrm{OAB}$
$\therefore \angle \mathrm{DAB}-\angle \mathrm{OAB}=\angle \mathrm{CBA}-\angle \mathrm{OBA}=90^{\circ}-60^{\circ}$
$\Rightarrow \angle \mathrm{OAD}=\angle \mathrm{OBC}=30^{\circ}$

Now, in $\triangle \mathrm{DAO}$ and $\triangle \mathrm{CBO}$,
$\mathrm{AD}=\mathrm{BC}$
(Sides of square ABCD)
$\angle D A O=\angle C B O \quad[$ From (i)]
$\mathrm{AO}=\mathrm{BO} \quad($ Sides of equilateral $\triangle \mathrm{OAB})$
\therefore By SAS congruence criteria,
$\Delta \mathrm{DAO} \cong \triangle \mathrm{CBO}$

So, OD = OC
Hence, \triangle OCD is an isosceles triangle.

Answer16)

Given: $A X=A Y$.
To prove: $\mathrm{CX}=\mathrm{BY}$

Proof:

In $\triangle \mathrm{CXA}$ and $\triangle \mathrm{BYA}$,
$A X=A Y$..Given
$\angle \mathrm{XAC}=\angle \mathrm{YAB} \ldots$ common angle

$A C=A B .$. Given,
$\Delta \mathrm{CXA} \cong \Delta \mathrm{BYA}$
(S.A.S. criteria)
$\mathrm{CX}=\mathrm{BY}$
(C.P.C.T.)

Answer17)

Given: $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{DL} \perp \mathrm{AB}$ and $\mathrm{DM} \perp \mathrm{AC}$ such that $\mathrm{DL}=\mathrm{DM}$
To prove: $\mathrm{AB}=\mathrm{AC}$

Proof:

In right angled triangles $\triangle \mathrm{BLD}$ and $\triangle \mathrm{CMD}$,
$\angle \mathrm{BLD}=\angle \mathrm{CMD}=90^{\circ}$
$B D=C D . .$. Given
DL $=$ DM.. Given
Thus by right angled hypotenuse side property of congruence,
$\Delta \mathrm{BLD} \cong \Delta \mathrm{CMD}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle A B D=\angle A C D$

In $\triangle \mathrm{ABC}$, we have,
$\angle A B D=\angle A C D$
$\therefore \mathrm{AB}=\mathrm{AC} . .$. Sides opposite to equal angles are equal

Answer18)

Given: In $\triangle A B C, A B=A C$ and the bisectors of $\angle B$ and $\angle C$ meet at a point 0 .

To prove: $\mathrm{BO}=\mathrm{CO}$ and $\angle \mathrm{BAO}=\angle \mathrm{CAO}$

Proof:

In,$\triangle \mathrm{ABC}$ we have,
$\angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B}$
$\angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C}$

But $\angle \mathrm{B}=\angle \mathrm{C}$... Given
So, $\angle \mathrm{OBC}=\angle \mathrm{OCB}$

Since the base angles are equal, sides are equal
$\therefore \mathrm{OC}=\mathrm{OB}$

Since OB and OC are bisectors of angles $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively, we have
$\angle \mathrm{ABO}=\frac{\frac{1}{2}}{2} \angle \mathrm{~B}$
$\angle \mathrm{ACO}=\frac{1}{2} \angle \mathrm{C}$
$\therefore \angle \mathrm{ABO}=\angle \mathrm{ACO}$

Now in $\triangle \mathrm{ABO}$ and $\triangle \mathrm{ACO}$
$\mathrm{AB}=\mathrm{AC} \ldots$ Given
$\angle \mathrm{ABO}=\angle \mathrm{ACO} .$. from (2)
$B O=O C \ldots$ from (1)
Thus by SAS property of congruence,
$\Delta \mathrm{ABO} \cong \triangle \mathrm{ACO}$

Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle B A O=\angle C A O$
ie. AO bisects $\angle \mathrm{A}$; Hence proved.

Answer19)

Given: (i) ABCD is a trapezium
(ii) M is the mid point of AB
(iii) N is the mid point of CD

To Prove: $\mathrm{AD}=\mathrm{BC}$.

Construction: (i) Join B to N

(ii) Join A to N

Proof:
Consider $\triangle \mathrm{AMN}$ and $\triangle \mathrm{BMN}$
$\angle \mathrm{AMN}=\angle \mathrm{BMN}=90$
$A M=B M$ (M is the midpoint of $A B$)
$\mathrm{MN}=\mathrm{MN}$ (common)
$\triangle \mathrm{AMN}$ congruent to $\triangle \mathrm{BMN}$ (SAS congruence rule)
Consider $\triangle \mathrm{ADN}$ and $\triangle \mathrm{BCN}$
$\mathrm{DN}=\mathrm{CN}(\mathrm{N}$ is the midpoint of CD$)$
$\mathrm{AN}=\mathrm{BN}(\mathrm{CPCT})$
$\angle \mathrm{MNA}=\angle \mathrm{BNM}(\mathrm{CPCT})$
$\angle \mathrm{MNC}=\angle \mathrm{MND}=90$
Subtracting Eq(2) from Eq(1)
$\angle \mathrm{MND}-\angle \mathrm{MNA}=\angle \mathrm{MNC}-\angle \mathrm{BNM}$
$\angle \mathrm{AND}=\angle \mathrm{BNC}$
$\Delta \mathrm{AND}$ congruent to $\triangle \mathrm{BNC}$
$\mathrm{AD}=\mathrm{BC}(\mathrm{CPCT})$
Hence proved

Answer20)

Given: Bisectors of the angles B and C of an isosceles triangle with $A B=A C$ intersect each other at 0 .

To prove: $\angle \mathrm{MOC}=\angle \mathrm{ABC}$

Proof:

In $\triangle \mathrm{ABC}$,
$\mathrm{AB}=\mathrm{AC}$ (Given)

$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ABC}$ (opposite angles to equal sides are equal)
$1 / 2 \angle \mathrm{ACB}=1 / 2 \angle \mathrm{ABC}$ (divide both sides by 2)
$\Rightarrow \angle O C B=\angle O B C \ldots(1)($ As $O B$ and $O C$ are bisector of $\angle \mathrm{B}$ and $\angle \mathrm{C})$
Now, $\angle \mathrm{MOC}=\angle \mathrm{OBC}+\angle \mathrm{OCB}$ (as exterior angle is equal to sum of two opposite interior angle)
$\Rightarrow \angle \mathrm{MOC}=\angle \mathrm{OBC}+\angle \mathrm{OBC}($ from $(1))$
$\Rightarrow \angle \mathrm{MOC}=2 \angle \mathrm{OBC}$
$\Rightarrow \angle \mathrm{MOC}=\angle \mathrm{ABC}$ (because 0 B is bisector of $\angle \mathrm{B}$)
Hence proved.

Answer21)

Given: (i) In an isosceles $\triangle \mathrm{ABC}$,
(ii) $\mathrm{AB}=\mathrm{AC}$,
(iii) BO and CO are the bisectors of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$.

To prove: $\angle \mathrm{ABD}=\angle \mathrm{BOC}$
Construction: Produce CB to point D.
Proof:

In $\triangle \mathrm{ABC}$,

$\because \mathrm{AB}=\mathrm{AC}$
(Given)
$\therefore \angle \mathrm{ACB}=\angle \mathrm{ABC} \quad$ (Angle opposite to equal sides are equal)
$\Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{ABC}$
$\Rightarrow \angle O C B=\angle O B C$
(Given, BO and CO are angle bisector of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$, respectively)
$\Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{ABC}$
$\Rightarrow \angle \mathrm{OCB}=\angle \mathrm{OBC}$
(Given, BO and CO are angle bisector of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$, respectively)

In $\triangle B O C$,
$\angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{BOC}=180^{\circ} \quad$ (By angle sum property of triangle)
$\Rightarrow \angle O B C+\angle O B C+\angle B O C=180^{\circ} \quad[$ From (i) $]$
$\Rightarrow 2 \angle \mathrm{OBC}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BOC}=180^{\circ} \quad(\mathrm{BO}$ is the angle bisector of $\angle \mathrm{ABC})$
$\angle O B C+\angle O C B+\angle B O C=180^{\circ} \quad$ By angle sum property of triangle
$\Rightarrow \angle \mathrm{OBC}+\angle \mathrm{OBC}+\angle \mathrm{BOC}=180^{\circ}$ From (i)
$\Rightarrow 2 \angle O B C+\angle B O C=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BOC}=180^{\circ} \quad \mathrm{BO}$ is the angle bisector of $\angle \mathrm{ABC}$

Also, DBC is a straight line.
So, $\angle \mathrm{ABC}+\angle \mathrm{DBA}=180^{\circ} \quad$ (Linear pair)
$\angle \mathrm{ABC}+\angle \mathrm{DBA}=180^{\circ} \quad$ (Linear pair)

From (ii) and (iii), we get
$\angle \mathrm{ABC}+\angle \mathrm{BOC}=\angle \mathrm{ABC}+\angle \mathrm{DBA}$
$\therefore \angle \mathrm{BOC}=\angle \mathrm{DBA}$

Answer22)

Given: P is the point on the bisector of an angle $\angle A B C$, and PQ \| AB

To Proof: BPQ is isoscele
Since,

BP is the bisector of $\angle \mathrm{ABC}=\angle \mathrm{ABP}=\angle \mathrm{PBC}$ (i)

Now,

PQ || AB
$\angle \mathrm{BPQ}=\angle \mathrm{ABP}$
(ii) [Alternate angles]

From (i) and (ii), we get
$\angle \mathrm{BPQ}=\angle \mathrm{PBC}$

Or,
$\angle \mathrm{BPQ}=\angle \mathrm{PBQ}$
Now, in $\triangle \mathrm{BPQ}$
$\angle \mathrm{BPQ}=\angle \mathrm{PBQ}$
$\triangle \mathrm{BPQ}$ is an isosceles triangle
Hence Proved.

Answer23) Given: A is an object in front of mirror LM,
B is the image of A and the observer is at D

AB intersects LM at T

To Prove: A and B are equidistant from LM

$\mathrm{AT}=\mathrm{BT}$
Construction: Join BD. Let it intersect LM at C
Join AC. CN be the normal at C.
Proof:
$\angle \mathrm{i}=\angle \mathrm{r}$
$A B \| N C$
...[Both are perpendicular to LM]
$\angle \mathrm{CAT}=\angle \mathrm{CAN}=\angle \mathrm{i}$
...(2)[Alternate angles]
$\angle \mathrm{CBA}=\angle \mathrm{DCN}=\angle \mathrm{r}$
...(3)[Corresponding angles]
From (1), (2) and (3), we get
$\angle \mathrm{CAT}=\angle \mathrm{CBA}$
In \triangle CAT and $\Delta \mathrm{CBT}$,
$\angle \mathrm{CAT}=\angle \mathrm{CBT}$
...[From (4)]
$\angle \mathrm{ATC}=\angle \mathrm{BTC}$
$\mathrm{CT}=\mathrm{CT}$
Therefore;
$\Delta \mathrm{CAT} \cong \Delta \mathrm{CBT}$
...[AAA Criteria]
$\mathrm{AT}=\mathrm{BT}$...[C.P.C.T]

Hence Proved.

Answer24)

Let $A B$ be the breadth of the river.
M is any point situated on the bank of the river.
Let O be the mid point of BM.
Moving along perpendicular to point such that A, O and N are in straight line.

Then MN is the required breadth of the river.
In \triangle OBA and $\triangle O M N$,
we have: $O B=O M$ (0 is midpoint)
$\angle O B A=\angle O M N \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{AOB}=\angle \mathrm{NOM}$ (Vertically opposite angle)
$\therefore \triangle \mathrm{OBA} \cong \triangle \mathrm{OMN}$ (ASA criterion)
In $\triangle \mathrm{OBA}$ and $\triangle \mathrm{OMN}$,
we have: $O B=0 \mathrm{M}$ (0 is midpoint)
$\angle O B A=\angle O M N \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{AOB}=\angle \mathrm{NOM}$ (Vertically opposite angle)
$\therefore \triangle \mathrm{OBA} \cong \triangle \mathrm{OMN}$ (ASA criterion)
Thus, $\mathrm{MN}=\mathrm{AB}$ (CPCT)
If $M N$ is known, one can measure the width of the river without actually crossing it.

Answer25)Given: D is the midpoint of ac
$B D=1 / 2 \mathrm{AC}$
To Prove: $\angle \mathrm{ABC}$ is 90°
In $\triangle \mathrm{ADB}, \mathrm{AD}=\mathrm{BD}$

$\angle \mathrm{DAB}=\angle \mathrm{DBA}=\angle \mathrm{x}$
(Opposite angles)
In $\triangle \mathrm{DCB}, \mathrm{BD}=\mathrm{CD}$
$\angle \mathrm{DBC}=\angle \mathrm{DCB}=\angle \mathrm{y}$
In $\triangle \mathrm{ABC}$ we will use the angle sum property
$\angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{CAB}=180^{\circ}$
$2(\angle x+\angle y)=180^{\circ}$
$\angle \mathrm{x}+\angle \mathrm{y}=90^{\circ}$
$\angle \mathrm{ABC}=90^{\circ}$
This meAnswer that ABC is the right angled triangle.

Answer26)No, because in the congruent rule, the two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle, that is, SAS criteria.

Answer 27) No,
Corresponding sides must be equal.

