EXERCISE-9(B)

Answer1) (i) No, because the sum of two sides of a triangle is not greater than the third side.
$5+4=9$
(ii) Yes, because the sum of two sides of a triangle is greater than the third side.
$7+4>8 ; 8+7>4 ; 8+4>7$
(iii) Yes, because the sum of two sides of a triangle is greater than the third side.
$5+6>10 ; 10+6>5 ; 5+10>6$
(iv) Yes, because the sum of two sides of a triangle is greater than the third side.
$2.5+5>7 ; 5+7>2.5 ; 2.5+7>5$
(v) No, because the sum of two sides of a triangle is not greater than the third side.
$3+4<8$

Answer2) Given: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=50^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$

In $\triangle A B C$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad$ (Angle sum property of a triangle)
$\Rightarrow 50^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=180^{\circ}-110^{\circ}$
$\Rightarrow \angle \mathrm{C}=70^{\circ}$

Hence, the longest side will be opposite to the largest angle $\left(\angle \mathrm{C}=70^{\circ}\right)$ i.e. AB .
And, the shortest side will be opposite to the smallest angle $\left(\angle \mathrm{A}=50^{\circ}\right)$ i.e. BC .

Answer3) (i) Given: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$
So, sum of the other two angles in triangle $\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}$
i.e. $\angle \mathrm{B}, \angle \mathrm{C}<90^{\circ}$

Since, $\angle \mathrm{A}$ is the greatest angle.
So, the longest side is BC.
(ii) Given: $\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$

Using angle sum property of triangle,
$\angle \mathrm{C}=90^{\circ}$
Since, $\angle \mathrm{C}$ is the greatest angle.
So, the longest side is $A B$.
(iii) Given: $\angle \mathrm{A}=100^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$

Using angle sum property of triangle,
$\angle B=30^{\circ}$
Since, $\angle \mathrm{A}$ is the greatest angle.
So, the shortest side is BC.

Answer4) Given: $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$ and $\angle B=60^{\circ}, \angle A=70^{\circ}$

To Prove:

(i) $\mathrm{AD}>\mathrm{CD}$

And, (ii) AD $>\mathrm{AC}$

Proof:

First join C and D
Now,
In $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-70^{\circ}-60^{\circ}=50^{\circ}$
$\angle \mathrm{C}=50^{\circ}$
$\angle A C B=50^{\circ}$ (i)
And also in $\triangle \mathrm{BDC}$
$\angle D B C=180^{\circ}-\angle A B C$
$=180^{\circ}-60^{\circ}=120^{\circ}$
$B D=B C$ (Given)
$\angle \mathrm{BCD}=\angle \mathrm{BDC}$
Now,
$\angle \mathrm{DBC}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$
$120^{\circ}+\angle \mathrm{BCD}+\angle \mathrm{BCD}=180^{\circ}$
$2 \angle \mathrm{BCD}=180^{\circ}-120^{\circ}$
$2 \angle B C D=60^{\circ}$
$\angle B C D=30^{\circ}$
Therefore, $\angle \mathrm{BCD}=\angle \mathrm{BDC}=30^{\circ}$ (ii)
Now, consider $\triangle \mathrm{BDC}$,

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{DAC}=70^{\circ} \text { (Given) } \\
& \angle \mathrm{BDC}=\angle \mathrm{ADC}=30^{\circ}[\text { From (ii) }] \\
& \angle \mathrm{ACD}=\angle \mathrm{ACB}+\angle \mathrm{BCD} \\
& =50^{\circ}+30^{\circ}[\text { From (i) and (ii) }] \\
& =80^{\circ}
\end{aligned}
$$

Now,
$\angle \mathrm{ADC}<\angle \mathrm{DAC}<\angle \mathrm{ACD}$
$\mathrm{AC}<\mathrm{DC}<\mathrm{AD}$ (Therefore, side opposite to greater angle is longer and smaller angle is smaller)
$\mathrm{AD}>\mathrm{CD}$

And,
$\mathrm{AD}>\mathrm{AC}$

Hence Proved.
We have,
$\angle A C D>\angle D A C$
And,
$\angle A C D>\angle A D C$

AD $>\mathrm{DC}$
$\mathrm{AD}>\mathrm{AC}$ (Therefore, side opposite to greater angle is longer and smaller angle is smaller)

Answer5)GIVEN:
$\angle B<\angle A$
$\angle C<\angle D$

TO PROVE:

$$
\mathrm{AD}<\mathrm{BC}
$$

PROOF:

$\angle B<\angle A$
SO,

$$
\text { OA < OB } \quad . . .(1) \quad(\text { SIDE OPPOSITE TO SMALLER ANGLE IS SMALL })
$$

NOW,
$\angle \mathrm{C}<\angle \mathrm{D}$
SO,

$$
\mathrm{OD}<\mathrm{OC}
$$

...(2) (SIDE OPPOSITE TO SMALLER ANGLE IS SMALL)
NOW,
ADDING 1 AND 2
$O A+O D<O B+O C$
ADDING WE GET,
$\mathrm{AD}<\mathrm{BC}$
HENCE PROVED.

Answer6) Given:
In quadrilateral $A B C D, A B$ smallest $\& C D$ is longest sides.
To Prove: $\angle A>\angle C$
$\& \angle B>\angle D$

Construction: Join AC.

Mark the angles as shown in the figure..

Proof:

In $\triangle A B C, A B$ is the shortest side.
$B C>A B$
$\angle 2>\angle 4 \ldots$...(i)
[Angle opposite to longer side is greater]
In $\triangle \mathrm{ADC}, \mathrm{CD}$ is the longest side
$\mathrm{CD}>\mathrm{AD}$
$\angle 1>\angle 3$
[Angle opposite to longer side is greater]
Adding (i) and (ii), we have
$\angle 2+\angle 1>\angle 4+\angle 3$
$\Rightarrow \angle A>\angle C$

Similarly, by joining BD, we can prove that
$\angle B>\angle D$

Answer 7) To Prove: $(A B+B C+C D+D A)>(A C+B D)$

Proof:

$A B C D$ is a quad.Its diagonals are $A C$ and $B D$.
In triangle $\mathrm{ACB}, \mathrm{AB}+\mathrm{BC}>\mathrm{AC}$
In triangle $\mathrm{BDC}, \mathrm{BC}+\mathrm{CD}>\mathrm{BD}$

In triangle $\mathrm{BAD}, \mathrm{AB}+\mathrm{AD}>\mathrm{BD}$

Adding 1,2,3 and 4,
$\mathrm{AB}+\mathrm{BC}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}+\mathrm{DC}+\mathrm{AB}+\mathrm{AD}>\mathrm{AC}+\mathrm{BD}+\mathrm{AC}+\mathrm{BD}$
$2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CD}+2 \mathrm{AD}>2 \mathrm{AC}+2 \mathrm{BD}$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}>\mathrm{AC}+\mathrm{BD}$. HENCE PROVED.
Answer8) Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side

Therefore, In $\Delta \mathrm{AOB}, \mathrm{AB}<\mathrm{OA}+\mathrm{OB}$
In $\triangle \mathrm{BOC}, \mathrm{BC}<\mathrm{OB}+\mathrm{OC}$ \qquad
In $\Delta \mathrm{COD}, \mathrm{CD}<\mathrm{OC}+\mathrm{OD}$ \qquad
In $\triangle \mathrm{AOD}, \mathrm{DA}<\mathrm{OD}+\mathrm{OA}$ \qquad

$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<20 \mathrm{~A}+20 \mathrm{~B}+20 \mathrm{C}+20 \mathrm{D}$
$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2[(\mathrm{AO}+\mathrm{OC})+(\mathrm{DO}+\mathrm{OB})$
$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$
Hence Proved.

Answer9) Given: In $\triangle \mathrm{ABC}, \angle \mathrm{B}=35^{\circ}, \angle \mathrm{C}=65^{\circ}$ and $\angle \mathrm{BAX}=\angle \mathrm{XAC}$
To find: Relation between AX, BX and CX in descending order.
In $\triangle \mathrm{ABC}$, by the angle sum property, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+35^{\circ}+65^{\circ}=180^{\circ}$
$\angle \mathrm{A}+100^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}=80^{\circ}$
But $\angle B A X=\angle A=40^{\circ}$

Now in $\triangle A B X$,
$\angle B=35^{\circ}$
$\angle B A X=40^{\circ}$

And $\angle \mathrm{BXA}=180^{\circ}-35^{\circ}-40^{\circ}$
$=105^{\circ}$

So, in $\triangle A B X$,
$\angle \mathrm{B}$ is smallest, so the side opposite is smallest, i.e. AX is smallest side.
$\therefore \mathrm{AX}<\mathrm{BX}$.
Now consider $\triangle \mathrm{AXC}$,
$\angle \mathrm{CAX}=\angle \mathrm{A}=40^{\circ}$
$\angle A X C=180^{\circ}-40^{\circ}-65^{\circ}$
$=180^{\circ}-105^{\circ}=75^{\circ}$
Hence, in $\triangle \mathrm{AXC}$ we have,
$\angle \mathrm{CAX}=40^{\circ}, \angle \mathrm{C}=65^{\circ}, \angle \mathrm{AXC}=75^{\circ}$
$\therefore \angle \mathrm{CAX}$ is smallest in $\triangle \mathrm{AXC}$

So the side opposite to $\angle \mathrm{CAX}$ is shortest
i.e. CX is shortest
$\therefore \mathrm{CX}<\mathrm{AX}$..
From 1 and 2,
$\mathrm{BX}>\mathrm{AX}>\mathrm{CX}$

Answer10) Given: $P Q>P R$
QS and RS are bisector of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ Respectively

To Prove: $S Q>S R$

Proof:
$\angle R>\angle Q$
(angle opposite to greater side is greater)
$1 / 2^{*} \angle \mathrm{R}>1 / 2^{*} \angle \mathrm{Q}$
$\angle \mathrm{SRQ}>\angle \mathrm{SQR}$
SQ>SR
(Side opposite to greater angle is greater)

Answer11) Given: $\mathrm{AB}=\mathrm{AC}$
To prove: $\mathrm{BD}>\mathrm{CD}$

Proof:

Since $A B=A C$
$\angle A B C=$
$\angle A C B$
(By

Isosceles Triangle property) ----(i)
Here clearly,
$\angle \mathrm{ABC}>\angle \mathrm{CBD}$
$\angle A C B>\angle C B D$---from (i)
$\angle \mathrm{DCB}>\angle \mathrm{CBD}$
BD $>\mathrm{CD}$
(Angle opposite to greater side is greater in a triangle)
Hence Proved.

Answer12) Let $\triangle \mathrm{ABC}$ be a triangle in which AC is the longest side.
To prove: Angle opposite the longest side is greater than $2 / 3$ of right angle.
Proof: $\angle \mathrm{B}>\angle \mathrm{A}$
And $\angle \mathrm{B}>\angle \mathrm{C}$
Adding (i) and (ii), we get
$\rightarrow \angle \mathrm{B}+\angle \mathrm{B}>\angle \mathrm{A}+\angle \mathrm{C}$
$\rightarrow 2 \angle B>\angle A+\angle C$
$\rightarrow 2 \angle \mathrm{~B}+\angle \mathrm{B}>\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$
$\rightarrow 3 \angle \mathrm{~B}>180^{\circ}=\angle \mathrm{B}>60^{\circ}$
$\rightarrow \angle B>2 / 3 \times$ right amgle.
$\left[60^{\circ}=2 / 3 \times 90^{\circ}\right]$

Answer13)

(i)To Prove: $\mathrm{CD}+\mathrm{DA}+\mathrm{AB}>\mathrm{BC}$

Proof:

$\triangle \mathrm{ABC}$, we have
$\mathrm{CD}+\mathrm{DA}>\mathrm{AC}$
Add AB on both sides, we get
$\mathrm{CD}+\mathrm{DA}+\mathrm{AB}>\mathrm{AC}+\mathrm{AB}>\mathrm{BC}$
$C D+D A+A B>B C$
Hence proved.
(ii) To Prove: $\mathrm{CD}+\mathrm{DA}+\mathrm{AB}+\mathrm{BC}>2 \mathrm{AC}$

Proof:

In $\triangle \mathrm{ABC}$, we have

$$
\begin{equation*}
\mathrm{AB}+\mathrm{BC}>\mathrm{AC} \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{ADC}$, we have
$\mathrm{CD}+\mathrm{DA}>\mathrm{AC}$
Adding (1) and (2), we get
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{AC}$
$\mathrm{CD}+\mathrm{DA}+\mathrm{AB}+\mathrm{BC}>2 \mathrm{AC}$
Hence Proved.

Answer14)

Given:

In triangle ABC, O is any interior point.
We know that any segment from a point 0 inside a triangle to any vertex of the triangle cannot be longer than the two sides adjacent to the vertex.
Thus, OA cannot be longer than both AB and CA (if this is
 possible, then 0 is outside the triangle).

To Prove:

(i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$
(iii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>1 / 2(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Proof:

(i) OA cannot be longer than both AB and CA
$A B>0 B$
AC $>0 \mathrm{C}$
Thus,
$\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC} \quad$...[Adding (1) and(2)]
$A B>0 B$
$\mathrm{AC}>\mathrm{OC}$

Thus,
$\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC} \quad$...[Adding (1) and (2)]
(ii) $\mathrm{AB}>0 \mathrm{~A}$.
$\mathrm{BC}>0 \mathrm{~B}$.....
CA>0C.....(5)
Adding the above three equations, we get:
Thus, $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$
OA cannot be longer than both AB and CA .
$\mathrm{AB}>0 \mathrm{~B}$.....(5)
$\mathrm{AC}>0 \mathrm{C}$.
$\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}[0 n$ adding (5) and (6)]
Thus, the first equation to be proved is shown correct.
(iii) Now, consider the triangles OAC, OBA and OBC.

We have:
OA $+0 \mathrm{C}>\mathrm{AC}$
$\mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC}$

Adding the above three equations, we get:
$\mathrm{OA}+0 \mathrm{C}+\mathrm{OA}+\mathrm{OB}+\mathrm{OB}+\mathrm{OC}>\mathrm{AB}+\mathrm{AC}+\mathrm{BC}$
$\Rightarrow 2(O A+O B+O C)>A B+A C+B C$
Thus, $0 A+0 B+0 C>1 / 2(A B+B C+C A)$.

Answer15) Given : (i) $A D \perp B C$
(ii) $\mathrm{CD}>\mathrm{BD}$

To Prove: $A C>A B$

Proof:

In $\triangle \mathrm{ABD} ; \angle \mathrm{ABD}+\angle \mathrm{BAD}+\angle \mathrm{BDA}=180^{\circ}$
$\angle \mathrm{ABD}+\angle \mathrm{BAD}+90^{\circ}=180^{\circ}$
$\angle \mathrm{ABD}+\angle \mathrm{BAD}=90^{\circ}$

Similarly; In $\triangle \mathrm{ADC} ; \angle \mathrm{ACB}+\angle \mathrm{CAD}=90^{\circ}$
Since; $\mathrm{BD}<\mathrm{CD} ; \angle \mathrm{BAD}<\angle \mathrm{CAD}$
$\angle \mathrm{ABD}>\angle \mathrm{ACB}$
$A C>A B$
(sides opposite to greater angles are greater)

Answer16) Given: $\mathrm{CD}=\mathrm{DE}$

To prove: $A B+A C>B E$

Proof:

In $\triangle \mathrm{ABC}$,
$A B+A C>B C$
$A B+A C>B C$... 1

In $\triangle \mathrm{BED}$,
$B D+C D>B E \Rightarrow B C>B E$
$B D+C D>B E \Rightarrow B C>B E$ 2

From (1) and (2), we get
$\mathrm{AB}+\mathrm{AC}>\mathrm{BE}$.
Hence Proved.

