Chapter 1 :- Number System

Exercise 1A

Answer1. Yes 0 is rational number because 0 can be written as $\frac{0}{1}$ which is in form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$

Answer 2.i) $\frac{5}{7}=1.4$

ii) $\frac{8}{3}=2.6$

iii) $-\frac{23}{6}=3.83$

iv)1.3

v) -2.4

Answer3. i) $\frac{3}{8}$ and $\frac{2}{5}$

Let, $\frac{3}{8}=x$ and $\frac{2}{5}=y$
Rational number lying between these two are
$\frac{1}{2}(x+y)=\frac{1}{2}\left(\frac{3}{8}+\frac{2}{5}\right)=\frac{1}{2} \times \frac{31}{40}=\frac{31}{80}$
ii)1.3 and 1.4

Let, $\mathrm{x}=1.3$ and $\mathrm{y}=1.4$
Rational number lying between these two are
$\frac{1}{2}(x+y)=\frac{1}{2}(1.3+1.4)=\frac{1}{2}(2.7)=1.35$
iii) -1 and $\frac{1}{2}$

Let, $x=-1$ and $y=\frac{1}{2}$
Rational number lying between these two are

$$
\frac{1}{2}(x+y)=\frac{1}{2}\left(-1+\frac{1}{2}\right)=\frac{1}{2}\left(\frac{-2+1}{2}\right)=\frac{1}{2} \times \frac{-1}{2}=-\frac{1}{4}
$$

iv) $-\frac{3}{4}$ and $-\frac{2}{5}$

Let $\mathrm{x}=-\frac{3}{4}$ and $\mathrm{y}=-\frac{2}{5}$
Rational number lying between these two are

$$
\frac{1}{2}(x+y)=\frac{1}{2}\left(\left(-\frac{3}{4}\right)+\left(-\frac{2}{5}\right)\right)=\frac{1}{2}\left(-\frac{23}{20}\right)=-\frac{23}{40}
$$

v) $\frac{1}{9}$ and $\frac{2}{9}$

Let $\mathrm{x}=\frac{1}{9}$ and $\mathrm{y}=\frac{2}{9}$
Rational number lying between these two are
$\frac{1}{2}(x+y)=\frac{1}{2}\left(\frac{1}{9}+\frac{2}{9}\right)=\frac{1}{2} \times \frac{3}{9}=\frac{3}{18}$ or $\frac{1}{6}$

Answer4.

A rational number lying between $\frac{3}{5}$ and $\frac{7}{8}$ is $\frac{1}{2}\left(\frac{3}{5}+\frac{7}{8}\right)$,
That is, $\frac{59}{80}$
Now rational number between $\frac{59}{80}$ and $\frac{7}{8}$ is

$$
\frac{1}{2}\left(\frac{59}{80}+\frac{7}{8}\right)=\frac{1}{2} \times \frac{129}{80}=\frac{129}{160}
$$

And, a rational lying between $\frac{3}{5}$ and $\frac{59}{80}$

$$
\frac{1}{2}\left(\frac{3}{5}+\frac{59}{80}\right)=\frac{1}{2} \times \frac{107}{80}=\frac{107}{160}
$$

3 rational numbers are $-\frac{107}{160}, \frac{59}{80}, \frac{129}{160}$

Answer5.

Let $\mathrm{n}=4$
We convert $\frac{3}{7}$ and $\frac{5}{7}$ into equivalent rational number by multiplying the number by multiplying the numerator and denominator by $(n+1)$, i.e., 5 .

Thus, $\frac{3}{7}=\frac{3}{7} \times \frac{5}{5}=\frac{15}{35}$ and $\frac{5}{7}=\frac{5}{7} \times \frac{5}{5}=\frac{25}{35}$
We have $\frac{15}{35}<\frac{16}{35}<\frac{17}{35}<\frac{18}{35}<\frac{19}{35}<\frac{20}{35}<\frac{21}{35}<\frac{22}{35}<\frac{23}{35}<\frac{24}{35}<\frac{25}{35}$
OR

$$
\frac{3}{7}<\frac{16}{35}<\frac{17}{35}<\frac{18}{35}<\frac{19}{35}<\frac{4}{7}<\frac{22}{35}<\frac{23}{35}<\frac{24}{35}<\frac{5}{7}
$$

Hence, 4 rational numbers are $\frac{19}{35}, \frac{4}{7}, \frac{22}{35}, \frac{23}{35}$

Answer 6.

Let $\mathrm{n}=6$
We convert 2 and 3 into equivalent rational number by multiplying the number by multiplying the numerator and denominator by $(n+1)$, i.e., 7 .

Thus, $\frac{2}{1}=\frac{2}{1} \times \frac{7}{7}=\frac{14}{7}$ and $\frac{3}{1}=\frac{3}{1} \times \frac{7}{7}=\frac{21}{7}$
We have, $\frac{14}{7}<\frac{15}{7}<\frac{16}{7}<\frac{17}{7}<\frac{18}{7}<\frac{19}{7}<\frac{20}{7}<\frac{21}{7}$
OR

$$
2<\frac{15}{7}<\frac{16}{7}<\frac{17}{7}<\frac{18}{7}<\frac{19}{7}<\frac{20}{7}<3
$$

Hence 6 rational numbers are $\frac{15}{7}<\frac{16}{7}<\frac{17}{7}<\frac{18}{7}<\frac{19}{7}<\frac{20}{7}$

Answer7.

Let $\mathrm{x}=\frac{3}{5}$ and $\mathrm{y}=\frac{2}{3}$. clearly $\mathrm{x}<\mathrm{y} . \mathrm{n}=6$
Make denominator same $\frac{3}{5} \times \frac{3}{3}=\frac{9}{15}$ and $\frac{2}{3} \times \frac{5}{5}=\frac{10}{15}$
Let $\mathrm{n}=5$
We convert $\frac{9}{15}$ and $\frac{10}{15}$ into equivalent rational number by multiplying the number by multiplying the numerator and denominator by $(n+1)$, i.e., 6 .

Thus, $\frac{9}{15}=\frac{9}{15} \times \frac{6}{6}=\frac{54}{90}$ and $\frac{9}{15}=\frac{10}{15} \times \frac{6}{6}=\frac{60}{90}$

We have, $\frac{54}{90}<\frac{55}{90}<\frac{56}{90}<\frac{57}{90}<\frac{58}{90}<\frac{59}{90}<\frac{60}{90}$
OR

$$
\frac{9}{15}<\frac{11}{18}<\frac{28}{25}<\frac{19}{30}<\frac{29}{30}<\frac{59}{90}<\frac{10}{15}
$$

Hence 5 rational numbers are $\frac{11}{18}<\frac{28}{25}<\frac{19}{30}<\frac{29}{30}<\frac{59}{90}$

Answer8.

Here $x=2.1$ and $y=2.2$, clearly $x<y, n=16$
Let $\mathrm{d}=\frac{y-x}{(n+1)}=\frac{2.2-2.1}{17}=\frac{0.1}{17}=0.005$
Hence, the required numbers between 2.1 and 2.2 are
$(x+d),(x+2 d),(x+3 d),(x+4 d),(x+5 d),(x+6 d),(x+7 d),(x+8 d),(x+9 d),(x+10 d)$, $(x+11 d)$,
$(x+11 d),(x+12 d),(x+13 d),(x+14 d),(x+15 d),(x+16 d)$
i.e., $2.105,2.110,2.115,2.120,2.125,2.130,2.135,2.140,2.145,2.150,2.155,2.160,2.165,2.170$
2.175, 2.180

Answer.9.

i) True,all natural numbers together with 0 form the collection W of all whole numbers, written as $W=[0,1,2,3,4 \ldots . .$.$] .$
ii) False, 0 is not a natural number but it's a whole number.
iii) False, the least whole number is 0 . Negative integers are not whole number.
iv) True, every integer in the $\frac{p}{q}$ can be written, where p and q are integers and $q \neq 0$.
v) False, fractional numbers are not integers.
vi) False, fractional numbers are not whole numbers.

