Exercise 8.1

Question 1:

Expand the expression $(1-2 x)^{5}$

Solution 1:

By using Binomial Theorem, the expression $(1-2 x)^{5}$ can be expanded as $(1-2 x)^{5}$
$={ }^{5} C_{0}(1)^{5}-{ }^{5} C_{1}(1)^{4}(2 x)+{ }^{5} C_{2}(1)^{3}(2 x)^{2}-{ }^{5} C_{3}(1)^{2}(2 x)^{3}+{ }^{5} C_{4}(1)^{1}(2 x)^{4}-{ }^{5} C_{5}(2 x)^{5}$
$=1-5(2 x)+10(4 x)^{2}-10\left(8 x^{3}\right)+5\left(16 x^{4}\right)-\left(32 x^{5}\right)$
$=1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$

Question 2:

Expand the expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$

Solution 2:

By using Binomial Theorem, the expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$ can be expanded as

$$
\begin{aligned}
& \left(\frac{2}{x}-\frac{x}{2}\right)^{5}={ }^{5} C_{0}\left(\frac{2}{x}\right)^{5}-{ }^{5} C_{1}\left(\frac{2}{x}\right)^{4}\left(\frac{x}{2}\right)+{ }^{5} C_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{x}{2}\right)^{2}-{ }^{5} C_{3}\left(\frac{2}{x}\right)^{2}\left(\frac{x}{2}\right)^{3}+{ }^{5} C_{4}\left(\frac{2}{x}\right)\left(\frac{x}{2}\right)^{4}-{ }^{5} C_{5}\left(\frac{x}{2}\right)^{5} \\
& =\frac{32}{x^{3}}-5\left(\frac{16}{x^{4}}\right)\left(\frac{x}{2}\right)+10\left(\frac{8}{x^{3}}\right)\left(\frac{x^{2}}{4}\right)-10\left(\frac{4}{x^{2}}\right)\left(\frac{x^{3}}{8}\right)+5\left(\frac{2}{x}\right)\left(\frac{x^{4}}{16}\right)-\frac{x^{5}}{32} \\
& =\frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5}{8} x^{3}-\frac{x^{5}}{32}
\end{aligned}
$$

Question 3:

Expand the expression $(2 x-3)^{6}$

Solution 3:

By using Binomial Theorem, the expression $(2 x-3)^{6}$ can be expanded as

$$
\begin{aligned}
& (2 x-3)^{6}={ }^{6} C_{0}(2 x)^{6}-{ }^{6} C_{1}(2 x)^{5}(3)+{ }^{6} C_{2}(2 x)^{4}(3)^{2}-{ }^{6} C_{3}(2 x)^{3}(3)^{3}+{ }^{6} C_{4}(2 x)^{2}(3)^{4}-{ }^{6} C_{5}(2 x)(3)^{5}+{ }^{6} C_{6}(3)^{6} \\
& =64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)(27)+15\left(4 x^{2}\right)(81)-6(2 x)(243)+729 \\
& =64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729
\end{aligned}
$$

Question 4:

Expand the expression $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$

Binomial Theorem

Solution 4:

By using Binomial Theorem, the expression $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$ can be expanded as

$$
\begin{aligned}
& \left(\frac{x}{3}+\frac{1}{x}\right)^{5}={ }^{5} C_{0}\left(\frac{x}{3}\right)^{5}+{ }^{5} C_{1}\left(\frac{x}{3}\right)^{4}\left(\frac{1}{x}\right)+{ }^{5} C_{2}\left(\frac{x}{3}\right)^{3}\left(\frac{1}{x}\right)^{2}+{ }^{5} C_{3}\left(\frac{x}{3}\right)^{2}\left(\frac{1}{x}\right)^{3}+{ }^{5} C_{4}\left(\frac{x}{3}\right)\left(\frac{1}{x}\right)^{4}+{ }^{5} C_{5}\left(\frac{1}{x}\right)^{5} \\
& =\frac{x^{5}}{243}+5\left(\frac{x^{4}}{81}\right)\left(\frac{1}{x}\right)+10\left(\frac{x^{3}}{27}\right)\left(\frac{1}{x^{2}}\right)+10\left(\frac{x^{2}}{9}\right)\left(\frac{1}{x^{3}}\right)+5\left(\frac{x}{3}\right)\left(\frac{1}{x^{4}}\right)+\frac{1}{x^{5}} \\
& =\frac{x^{5}}{243}+\frac{5 x^{3}}{81}+\frac{10 x}{9 x}+\frac{5}{3 x^{3}}+\frac{1}{x^{5}}
\end{aligned}
$$

Question 5:

Expand $\left(x+\frac{1}{x}\right)^{6}$

Solution 5:

By using Binomial Theorem, the expression $\left(x+\frac{1}{x}\right)^{6}$ can be expanded as

$$
\begin{aligned}
& \left(x+\frac{1}{x}\right)^{6}={ }^{6} C_{0}(x)^{6}+{ }^{6} C_{1}(x)^{5}\left(\frac{1}{x}\right)+{ }^{6} C_{2}(x)^{4}\left(\frac{1}{x}\right)^{2}+{ }^{6} C_{3}(x)^{3}\left(\frac{1}{x}\right)^{3}+{ }^{6} C_{4}(x)^{2}\left(\frac{1}{x}\right)^{4}+{ }^{6} C_{5}(x)\left(\frac{1}{x}\right)^{5}+{ }^{6} C_{6}\left(\frac{1}{x}\right)^{6} \\
& =x^{6}+6(x)^{5}\left(\frac{1}{x}\right)+15(x)^{4}\left(\frac{1}{x^{2}}\right)+20(x)^{3}\left(\frac{1}{x^{3}}\right)+15(x)^{2}\left(\frac{1}{x^{4}}\right)+6(x)\left(\frac{1}{x^{5}}\right)+\frac{1}{x^{6}} \\
& =x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}
\end{aligned}
$$

Question 6:

Using Binomial Theorem, evaluate (96) ${ }^{3}$

Solution 6:

96 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.
It can be written that, $96=100-4$

$$
\begin{aligned}
& \therefore(96)^{3}=(100-4)^{3} \\
& ={ }^{3} C_{0}(100)^{3}-{ }^{3} C_{1}(100)^{2}(4)+{ }^{3} C_{2}(100)(4)^{2}-3 C_{3}(4)^{3} \\
& =(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3} \\
& =1000000-120000+4800-64 \\
& =884736
\end{aligned}
$$

Question 7:

Using Binomial Theorem, evaluate (102) ${ }^{5}$

Solution 7:

102 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.
It can be written that, $102=100+2$

$$
\begin{aligned}
& \therefore(102)^{5}=(100+2)^{5} \\
& ={ }^{5} C_{0}(100)^{5}+{ }^{5} C_{1}(100)^{4}(2)+{ }^{5} C_{2}(100)^{3}(2)^{2}+{ }^{5} C_{3}(100)^{2}(2)^{3}+{ }^{5} C_{4}(100)(2)^{4}+{ }^{5} C_{5}(2)^{5} \\
& =10000000000+100000000+40000000+800000+8000+32 \\
& =11040808032
\end{aligned}
$$

Question 8:

Using Binomial Theorem, evaluate (101) ${ }^{4}$

Solution 8:

101 can be expressed as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.
It can be written that, $101=100+1$

$$
\begin{aligned}
& \therefore(101)^{4}=(100+1)^{4} \\
& ={ }^{4} C_{0}(100)^{4}+{ }^{4} C_{1}(100)^{3}(1)+{ }^{4} C_{2}(100)^{2}(1)^{2}+{ }^{4} C_{3}(100)(1)^{3}+{ }^{4} C_{4}(1)^{4} \\
& =(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4} \\
& =100000000+4000000+60000+400+1 \\
& =104060401
\end{aligned}
$$

Question 9:

Using Binomial Theorem, evaluate (99) ${ }^{5}$

Solution 9:

99 can be written as the sum or difference of two numbers whose powers are easier to calculate and then, binomial theorem can be applied.
It can be written that, $99=100-1$

$$
\begin{aligned}
& \therefore(99)^{5}=(100-1)^{5} \\
& ={ }^{5} C_{0}(100)^{5}-{ }^{5} C_{1}(100)^{4}(1)+{ }^{5} C_{2}(100)^{3}(1)^{2}-{ }^{5} C_{3}(100)^{2}(1)^{3}+{ }^{5} C_{4}(100)(1)^{4}-{ }^{5} C_{5}(1)^{5} \\
& =(100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1 \\
& =10000000000-500000000+10000000-100000+500-1 \\
& =10010000500-500100001 \\
& =9509900499
\end{aligned}
$$

Question 10:

Using Binomial Theorem, indicate which number is larger (1.1) ${ }^{10000}$ or 1000 .

Solution 10:

By splitting 1.1 and then applying Binomial Theorem, the first few terms of $(1.1)^{10000}$ be obtained as
$(1.1)^{10000}=(1+0.1)^{10000}$
$={ }^{10000} C_{0}+{ }^{10000} C_{1}(1.1)+$ Other positive terms
$=1+10000 \times 1.1+$ Other positive terms
$=1+11000+$ Other positive terms
>1000
Hence, $(1.1)^{10000}>1000$.

Question 11:

Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate. $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$

Solution 11:

Using Binomial Theorem, the expressions, $(a+b)^{4}$ and $(a-b)^{4}$, can be expanded as

$$
\begin{aligned}
& (a+b)^{4}={ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4} \\
& (a-b)^{4}={ }^{4} C_{0} a^{4}-{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}-{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4} \\
& \therefore(a+b)^{4}-(a-b)^{4}={ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}-\left[{ }^{4} C_{0} a^{4}-{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}-{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}\right] \\
& =2\left({ }^{4} C_{1} a^{3} b+{ }^{4} C_{3} a b^{3}\right)=2\left(4 a^{3} b+4 a b^{3}\right) \\
& =8 a b\left(a^{2}+b^{2}\right)
\end{aligned}
$$

By putting $a=\sqrt{3}$ and $b=\sqrt{2}$, we obtain

$$
\begin{aligned}
& (\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=8(\sqrt{3})(\sqrt{2})\left\{(\sqrt{3})^{2}+(\sqrt{2})^{2}\right\} \\
& =8(\sqrt{6})\{3+2\}=40 \sqrt{6}
\end{aligned}
$$

Question 12:

Find $(x+1)^{6}+(x-1)^{6}$. Hence or otherwise evaluate. $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$

Solution 12:

Using Binomial Theorem, the expression, $(x+1)^{6}$ and $(x-1)^{6}$, can be expanded as

$$
\begin{aligned}
& (x+1)^{6}={ }^{6} C_{0} x^{6}+{ }^{6} C_{1} x^{5}+{ }^{6} C_{2} x^{4}+{ }^{6} C_{3} x^{3}+{ }^{6} C_{4} x^{2}+{ }^{6} C_{5} x+{ }_{6} C_{6} \\
& (x-1)^{6}={ }^{6} C_{0} x^{6}-{ }^{6} C_{1} x^{5}+{ }^{6} C_{2} x^{4}-{ }^{6} C_{3} x^{3}+{ }^{6} C_{4} x^{2}-{ }^{6} C_{5} x+{ }^{6} C_{6} \\
& \therefore(x+1)^{6}+(x-1)^{6}=2\left[{ }^{6} C_{0} x^{6}+{ }_{2} C_{2} x^{4}+{ }_{6} C_{4} x^{2}+{ }_{6} C_{6}\right] \\
& =2\left[x^{6}+15 x^{4}+15 x^{2}+1\right]
\end{aligned}
$$

By putting $x=\sqrt{2}$ we obtain

$$
\begin{aligned}
& (\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}=2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right] \\
& =2(8+15 \times 4+15 \times 2+1) \\
& =2(8+60+30+1) \\
& =2(99)=198
\end{aligned}
$$

Question 13:

Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

Solution 13:

In order to show that $9^{n+1}-8 n-9$ is divisible by 64 , it has to be prove that, $9^{n+1}-8 n-9=64 k$, where k is some natural number
By Binomial Theorem,

$$
(1+a)^{m}={ }^{m} C_{0}+{ }^{m} C_{1} a+{ }^{m} C_{2} a^{2}+\ldots .+{ }^{m} C_{m} a^{m}
$$

For $a=8$ and $m=n+1$, we obtain
$(1+8)^{n+1}={ }^{n+1} C_{0}+{ }^{n+1} C_{1}(8)+{ }^{n+1} C_{2}(8)^{2}+\ldots .+{ }^{n+1} C_{n+1}(8)^{n+1}$
$\Rightarrow 9^{n+1}=1+(n+1)(8)+8^{2}\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots .+{ }^{n+1} C_{n+1}(8)^{n-1}\right]$
$\Rightarrow 9^{n+1}=9+8 n+64\left[{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots .+{ }^{n+1} C_{n+1}(8)^{n-1}\right]$
$\Rightarrow 9^{n+1}-8 n-9=64 k$, where $k={ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots .+{ }^{n+1} C_{n+1}(8)^{n-1}$ is a natural number
Thus, $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

Question 14:

Prove that $\sum_{r=0}^{n} 3^{r}{ }^{n} C_{r}=4^{n}$

Solution 14:

By Binomial Theorem,

$$
\sum_{r=0}^{n}{ }^{n} C_{r} a^{n-r} b^{r}=(a+b)^{n}
$$

By putting $b=3$ and $a=1$ in the above equation, we obtain

$$
\begin{aligned}
& \sum_{r=0}^{n}{ }^{n} C_{r}(1)^{n-r}(3)^{r}=(1+3)^{n} \\
& \Rightarrow \sum_{r=0}^{n} 3^{r} C_{r}=4^{n}
\end{aligned}
$$

Hence proved.

Exercise 8.2

Question 1:

Find the coefficient of x^{5} in $(x+3)^{8}$

Solution 1:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Assuming that x^{5} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+3)^{8}$, we obtain

$$
T_{r+1}={ }^{8} C_{r}(x)^{8-r}(3)^{r}
$$

Comparing the indices of x in x^{5} in T_{r+1},
We obtain $\mathrm{r}=3$
Thus, the coefficient of x^{5} is ${ }^{8} C_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2.5!} \cdot 3^{3}=1512$.

Question 2:

Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$

Solution 2:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{t h}$ term of the expansion $(a-2 b)^{12}$, we obtain

$$
T_{r+1}={ }^{12} C_{r}(a)^{12-r}(-2 b)^{r}={ }^{12} C_{r}(-2)^{r}(a)^{12-r}(b)^{r}
$$

Comparing the indices of a and b in $a^{5} b^{7}$ in T_{r+1},
We obtain $\mathrm{r}=7$
Thus, the coefficient of $a^{5} b^{7}$ is

$$
{ }^{12} C_{7}(-2)^{7}=\frac{12!}{7!5!} \cdot 2^{7}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!} \cdot(-2)^{7}=-(792)(128)=-101376 .
$$

Question 3:

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$

Solution 3:

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y^{6}\right)$ is

$$
T_{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}=(-1)^{r}{ }^{6} C_{r} \cdot x^{12-2 r} \cdot y^{r}
$$

Question 4:

Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$

Solution 4:

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term $\}$ in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is

$$
T_{r+1}={ }^{12} C_{r}\left(x^{2}\right)^{12-r}(-y x)^{r}=(-1)^{r}{ }^{12} C_{r} \cdot x^{24-2 r} \cdot y^{r}=(-1)^{r}{ }^{12} C_{r} \cdot x^{24-r} \cdot y^{r}
$$

Question 5:

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.

Solution 5:

It is known $(r+1)^{\text {th }}$ term, T_{r+1}, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the $4^{\text {th }}$ term in the expansion of $\left(x^{2}-2 y\right)^{12}$ is

$$
T_{4}=T_{3+1}={ }^{12} C_{3}(x)^{12-3}(-2 y)^{3}=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot x^{9} \cdot(2)^{3} \cdot y^{3}=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} x^{9} y^{3}=-1760 x^{9} y^{3}
$$

Question 6:

Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Solution 6:

It is known $(r+1)^{\text {th }}$ term, T_{r+1}, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

Thus, the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is
$T_{13}=T_{12+1}={ }^{18} C_{12}(9 x)^{18-12}\left(-\frac{1}{3 \sqrt{x}}\right)^{12}$
$=(-1)^{12} \frac{18!}{12!6!}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$
$=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13.12!}{12!.6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6}\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right) \quad\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right]$
$=18564$

Question 7:

Find the middle terms in the expansions of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Solution 7:

It is known that in the expansion of $(a+b)^{n}$, in n is odd, then there are two middle terms,
Namely $\left(\frac{n+1}{2}\right)^{\text {th }}$ term and $\left(\frac{n+1}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle terms in the expansion $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{\text {th }}=4^{\text {th }}$ and $\left(\frac{7+1}{2}+1\right)^{\text {th }}=5^{\text {th }}$ term

$$
\begin{aligned}
& T_{4}=T_{3+1}={ }^{7} C_{3}(3)^{7-3}\left(-\frac{x^{3}}{6}\right)^{3}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}} \\
& =-\frac{7 \cdot 6 \cdot 5.4!}{3 \cdot 2.4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9}=-\frac{105}{8} x^{9} \\
& T_{5}=T_{4+1}={ }^{7} C_{4}(3)^{7-4}\left(-\frac{x^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!} \cdot 3^{3} \cdot \frac{x^{12}}{6^{4}} \\
& =\frac{7 \cdot 6 \cdot 5.4!}{4!.3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}
\end{aligned}
$$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Question 8:

Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$

Solution 8:

It is known that in the expansion of $(a+b)^{n}$, in n is even, then the middle term is
$\left(\frac{n}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$
$T_{4}=T_{5+1}={ }^{10} C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5}=\frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{5}} \cdot 9^{5} \cdot y^{5}$
$=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot x^{5} y^{5} \quad\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]$
$=252 \times 3^{5} \cdot x^{5} \cdot y^{5}=6123 x^{5} y^{5}$
Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$.

Question 9:

In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

Solution 9:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Assuming that a^{m} occurs in the $(r+1)^{t h}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{r+1}={ }^{m+n} C_{r}(1)^{m+n-r}(a)^{r}={ }^{m+n} C_{r} a^{r}
$$

Comparing the indices of a in a^{m} in T_{r+1},
We obtain $r=m$
Therefore, the coefficient of a^{m} is

$$
\begin{equation*}
{ }^{m+n} C_{m}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m+n)!}{m!n!} \ldots \ldots . \tag{1}
\end{equation*}
$$

Assuming that a^{n} occurs in the $(k+1)^{t h}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{k+1}={ }^{m+n} C_{k}(1)^{m+n-k}(a)^{k}={ }^{m+n} C_{k}(a)^{k}
$$

Comparing the indices of a in a^{n} and in T_{k+1},
We obtain
$k=n$

Therefore, the coefficient of a^{n} is

$$
\begin{equation*}
{ }^{m+n} C_{n}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!} . \tag{2}
\end{equation*}
$$

Thus, from (1) and (2), it can be observed that the coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.

Question 10:

The coefficients of the $(r-1)^{t h}, r^{t h}$ and $(r+1)^{t h}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1:3:5. Find n and r.

Solution 10:

It is known that $(k+1)^{t h}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{k+1}={ }^{n} C_{k} a^{n-k} b^{k} .
$$

Therefore, $(r-1)^{t h}$ term in the expansion of $(x+1)^{n}$ is
$T_{r-1}={ }^{n} C_{r-2}(x)^{n-(r-2)}(1)^{(r-2)}={ }^{n} C_{r-2} x^{n-r+2}$
$(r+1)$ term in the expansion of $(x+1)^{n}$ is
$T_{r+1}={ }^{n} C_{r}(x)^{n-r}(1)^{r}={ }^{n} C_{r} x^{n-r}$
$r^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is
$T_{r}={ }^{n} C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}={ }^{n} C_{r-1} x^{n-r+1}$
Therefore, the coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ ${ }^{n} C_{r-2},{ }^{n} C_{r-1}$, and ${ }^{n} C_{r}$ are respectively. Since these coefficients are in the ratio 1:3:5, we obtain $\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{1}{3}$ and $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{3}{5}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}=\frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)!(n-r+1)!}$
$=\frac{r-1}{n-r+2}$
$\therefore \frac{r-1}{n-r+2}=\frac{1}{3}$
$\Rightarrow 3 r-3=n-r+2$
$\Rightarrow n-4 r+5=0$

$$
\begin{align*}
& \frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} \tag{1}\\
& =\frac{r}{n-r+1}
\end{align*}
$$

$$
\begin{align*}
& \therefore \frac{r}{n-r+1}=\frac{3}{5} \\
& \Rightarrow 5 r=3 n-3 r+3 \\
& \Rightarrow 3 n-8 r+3=0 \tag{2}
\end{align*}
$$

Multiplying (1) by 3 and subtracting it from (2), we obtain
$4 r-12=0$
$\Rightarrow r=3$
Putting the value of r in (1), we obtain n
$-12+5=0$
$\Rightarrow n=7$
Thus, $n=7$ and $r=3$

Question 11:

Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Solution 11:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r} .
$$

Assuming that x^{n} occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n}$, we obtain

$$
T_{r+1}={ }^{2 n} C_{r}(1)^{2 n-r}(x)^{r}={ }^{2 n} C_{r}(x)^{r}
$$

Comparing the indices of x in x^{n} and in T_{r+1}, we obtain $r=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is

$$
\begin{equation*}
{ }^{2 n} C_{n}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{(n!)^{2}} . \tag{1}
\end{equation*}
$$

Assuming that x^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n-1}$, we obtain

$$
T_{k+1}={ }^{2 n} C_{k}(1)^{2 n-1-k}(x)^{k}={ }^{2 n} C_{k}(x)^{k}
$$

Comparing the indices of x in x^{n} and in T_{k+1}, we obtain $k=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is

$$
\begin{align*}
& { }^{2 n-1} C_{n}=\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!} \\
& =\frac{2 n \cdot(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 \cdot n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] . \tag{2}
\end{align*}
$$

From (1) and (2), it is observed that $\frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n}$

$$
\Rightarrow{ }^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)
$$

Therefore, the coefficient of x^{n} expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.
Hence proved.

Question 12:

Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

Solution 12:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r} .
$$

Assuming that x^{2} occurs in the $(r+1)^{t h}$ term of the expansion of $(1+x)^{m}$, we obtain

$$
T_{r+1}={ }^{m} C_{r}(1)^{m-r}(x)^{r}={ }^{m} C_{r}(x)^{r}
$$

Comparing the indices of x in x^{2} and in T_{r+1}, we obtain $r=2$
Therefore, the coefficient of x^{2} is ${ }^{m} C_{2}$
It is given that the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

$$
\begin{aligned}
& \therefore{ }^{m} C_{2}=6 \\
& \Rightarrow \frac{m!}{2!(m-2)!}=6 \\
& \Rightarrow \frac{m(m-1)(m-2)!}{2 \times(m-2)!}=6 \\
& \Rightarrow m(m-1)=12 \\
& \Rightarrow m^{2}-m-12=0 \\
& \Rightarrow m^{2}-4 m+3 m-12=0 \\
& \Rightarrow m(m-4)+3(m-4)=0 \\
& \Rightarrow(m-4)(m+3)=0 \\
& \Rightarrow(m-4)=0 \text { or }(m+3)=0 \\
& \Rightarrow m=4 \text { or } m=-3
\end{aligned}
$$

Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4.

Miscellaneous Exercise

Question 1:

Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729 , 7290 and 30375, respectively.

Solution 1:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
The first three terms of the expansion are given as 729, 7290 and 30375 respectively. Therefore, we obtain

$$
\begin{align*}
& T_{1}={ }^{n} C_{0} a^{n-0} b^{0}=a^{n}=729 \ldots . .(1) \tag{1}\\
& T_{2}={ }^{n} C_{1} a^{n-1} b^{1}=n a^{n-1} b=7290 \ldots \ldots .(2) \tag{2}\\
& T_{2}={ }^{n} C_{1} a^{n-2} b^{2}=\frac{n(n-1)}{2} a^{n-2} b^{2}=30375 \tag{3}
\end{align*}
$$

Dividing (2) by (1), we obtain

$$
\frac{n a^{n-1} b}{a^{n}}=\frac{7290}{729}
$$

$$
\begin{equation*}
\Rightarrow \frac{n b}{a}=10 \tag{4}
\end{equation*}
$$

Dividing (3) by (2), we obtain

$$
\frac{n(n-1) a^{n-2} b^{2}}{2 n a^{n-1} b}=\frac{30375}{7290}
$$

$$
\Rightarrow \frac{(n-1) b}{2 a}=\frac{30375}{7290}
$$

$$
\Rightarrow \frac{(n-1) b}{a}=\frac{30375 \times 2}{7290}=\frac{25}{3}
$$

$$
\Rightarrow \frac{n b}{a}-\frac{b}{a}=\frac{25}{3}
$$

$$
\Rightarrow 10-\frac{b}{a}=\frac{25}{3} \quad[\operatorname{Using}(4)]
$$

$$
\Rightarrow \frac{b}{a}=10-\frac{25}{3}=\frac{5}{3}
$$

From (4) and (5), we obtain
$n \cdot \frac{5}{3}=10$
$\Rightarrow n=6$
Substituting $n=6$ in equation (1), we obtain a^{6}
$=729$
$\Rightarrow a=\sqrt[6]{729}=3$

From (5), we obtain
$\frac{b}{3}=\frac{5}{3} \Rightarrow b=5$
Thus, $a=3, b=5$, and $n=6$.

Question 2:

Find a if the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are equal.

Solution 2:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Assuming that x^{2} occurs in the $(r+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain

$$
T_{r+1}={ }^{9} C_{r}(3)^{9-r}(a x)^{r}={ }^{9} C_{r}(3)^{9-r} a^{r} x^{r}
$$

Comparing the indices of x in x^{2} and in T_{r+1}, we obtain

$$
r=2
$$

Thus, the coefficient of x^{2} is

$$
{ }^{9} C_{2}(3)^{9-2} a^{2}=\frac{9!}{2!7!}(3)^{7} a^{2}=36(3)^{7} a^{2}
$$

Assuming that x^{3} occurs in the $(k+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain

$$
T_{k+1}={ }^{9} C_{k}(3)^{9-k}(a x)^{k}={ }^{9} C_{k}(3)^{9-k} a^{k} x^{k}
$$

Comparing the indices of x in x^{3} and in T_{k+1}, we obtain $k=3$
Thus, the coefficient of x^{3} is

$$
{ }^{9} C_{3}(3)^{9-3} a^{3}=\frac{9!}{3!6!}(3)^{6} a^{3}=84(3)^{6} a^{3}
$$

It is given that the coefficient of x^{2} and x^{3} are the same.

$$
\begin{aligned}
& 84(3)^{6} a^{3}=36(3)^{7} a^{2} \\
& \Rightarrow 84 a=36 \times 3 \\
& \Rightarrow a=\frac{36 \times 3}{84}=\frac{104}{84} \\
& \Rightarrow a=\frac{9}{7}
\end{aligned}
$$

Thus, the required value of a is $9 / 7$.

Question 3:

Find the coefficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

Solution 3:

Using Binomial Theorem, the expressions, $(1+2 x)^{6}$ and $(1-x)^{7}$, can be expanded as

$$
\begin{aligned}
& (1+2 x)^{6}={ }^{6} C_{0}+{ }^{6} C_{1}(2 x)+{ }^{6} C_{2}(2 x)^{2}+{ }^{6} C_{3}(2 x)^{3}+{ }^{6} C_{4}(2 x)^{4}+{ }^{6} C_{5}(2 x)^{5}+{ }^{6} C_{6}(2 x)^{6} \\
& =1+6(2 x)+15(2 x)^{2}+20(2 x)^{3}+15(2 x)^{4}+6(2 x)^{5}+(2 x)^{6} \\
& =1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6} \\
& (1-x)^{7}={ }^{7} C_{0}-{ }^{7} C_{1}(x)+{ }^{7} C_{2}(x)^{2}-{ }^{7} C_{3}(x)^{3}+{ }^{7} C_{4}(x)^{4}-{ }^{7} C_{5}(x)^{5}+{ }^{7} C_{6}(x)^{6}-{ }^{7} C_{7}(x)^{7} \\
& =1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7} \\
& \therefore(1+2 x)^{6}(1-x)^{7} \\
& =\left(1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}\right)\left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)
\end{aligned}
$$

The complete multiplication of the two brackets is not required to be carried out. Only those terms, which involve x^{5}, are required.
The terms containing x^{5} are
$1\left(-21 x^{5}\right)+(12 x)\left(35 x^{4}\right)+\left(60 x^{2}\right)\left(-35 x^{3}\right)+\left(160 x^{3}\right)\left(21 x^{2}\right)+\left(240 x^{4}\right)(-7 x)+\left(192 x^{5}\right)(1)$
$=171 x^{5}$
Thus, the coefficient of x^{5} in the given product is 171 .

Question 4:

If a and b are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever n is a positive integer. [Hint: write $a^{n}=(a-b+b)^{n}$ and expand]

Solution 4:

In order to prove that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, it has to be proved that $a^{n}-b^{n}=k(a-b)$, where k is some natural number
It can be written that, $a=a-b+b$

$$
\begin{aligned}
& \therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n} \\
& ={ }^{n} C_{0}(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots .+{ }^{n} C_{n-1}(a-b) b^{n-1}+{ }^{n} C_{n} b^{n} \\
& =(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots+{ }^{n} C_{n-1}(a-b) b^{n-1}+b^{n} \\
& \Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+{ }^{n} C_{1}(a-b)^{n-2} b+\ldots .+{ }^{n} C_{n-1} b^{n-1}\right] \\
& \Rightarrow a^{n}-b^{n}=k(a-b)
\end{aligned}
$$

Where, $k=\left[(a-b)^{n-1}+{ }^{n} C_{1}(a-b)^{n-2} b+\ldots .+{ }^{n} C_{n-1} b^{n-1}\right]$ is a natural number
This shows that $(a-b)$ is a factor of $\left(a^{n}-b^{n}\right)$, where n is a positive integer.

Binomial Theorem

Question 5:

Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

Solution 5:

Firstly, the expression $(a+b)^{6}-(a-b)^{6}$ is simplified by using Binomial Theorem. This can be done as

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b})^{6}={ }^{6} \mathrm{C}_{0} \mathrm{a}^{6}+{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}+{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}+{ }^{6} \mathrm{C}_{5} \mathrm{a}^{1} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6} \\
& =a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6} \\
& (a-b)^{6}={ }^{6} \mathrm{C}_{0} a^{6}-{ }^{6} \mathrm{C}_{1} \mathrm{a}^{5} \mathrm{~b}+{ }^{6} \mathrm{C}_{2} \mathrm{a}^{4} \mathrm{~b}^{2}-{ }^{6} \mathrm{C}_{3} \mathrm{a}^{3} \mathrm{~b}^{3}+{ }^{6} \mathrm{C}_{4} \mathrm{a}^{2} \mathrm{~b}^{4}-{ }^{6} \mathrm{C}_{5} \mathrm{a}^{1} \mathrm{~b}^{5}+{ }^{6} \mathrm{C}_{6} \mathrm{~b}^{6} \\
& =a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{6} \\
& \therefore(a+b)^{6}-(a-b)^{6}=2\left[6 a^{5} b+20 a^{3} b^{3}+6 a b^{5}\right]
\end{aligned}
$$

Putting $\mathrm{a}=\sqrt{3}$ and $\mathrm{b}=\sqrt{2}$, we obtain

$$
\begin{aligned}
& (\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2\left[6(\sqrt{3})^{5}(\sqrt{2})+20(\sqrt{3})^{3}(\sqrt{2})^{3}+6(\sqrt{3})(\sqrt{2})^{5}\right] \\
& =2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}] \\
& =2 \times 198 \sqrt{6} \\
& =396 \sqrt{6}
\end{aligned}
$$

Question 6:

Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$

Solution 6:

Firstly, the expression $(x+y)^{4}+(x-y)^{4}$ is simplified by using Binomial Theorem.
This can be done as

$$
\begin{aligned}
& (x+y)^{4}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}+{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x-y)^{4}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}-{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
& =x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4} \\
& \therefore(x+y)^{4}+(x-y)^{4}=2\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)
\end{aligned}
$$

Putting $x=a^{2}$ and $y=\sqrt{a^{2}-1}$, we obtain

$$
\begin{aligned}
& \left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right] \\
& =2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right] \\
& =2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right]
\end{aligned}
$$

$=2\left[\mathrm{a}^{8}+6 \mathrm{a}^{6}-5 \mathrm{a}^{4}-2 \mathrm{a}^{2}+1\right]$
$=2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2$

Question 7:

Find an approximation of $(0.99)^{5}$ using the first three terms of its expansion.

Solution 7:

$0.99=1-0.01$
$\therefore(0.99)^{5}=(1-0.01)^{5}$
$={ }^{5} \mathrm{C}_{0}(1)^{5}-{ }^{5} \mathrm{C}_{1}(1)^{4}(0.01)+{ }^{5} \mathrm{C}_{2}(1)^{3}(0.01)^{2} \quad$ [Approximately]
$=1-5(0.01)+10(0.01)^{2}$
$=1-0.05+0.001$
$=1.001-0.05$
$=0.951$
Thus, the value of $(0.99)^{5}$ is approximately 0.951 .

Question 8:

Find n, if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$ is $\sqrt{6}: 1$.

Solution 8:

In the expansion, $(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots+{ }^{n} C_{n-1} a b^{n-1}+{ }^{n} C_{n} b^{n}$
Fifth term from the beginning $={ }^{n} \mathrm{C}_{4} \mathrm{a}^{\mathrm{n}-4} \mathrm{~b}^{4}$
Fifth term from the end $={ }^{n} \mathrm{C}_{4} a^{4} b^{n-4}$
Therefore, it is evident that in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$ are fifth term from the beginning is ${ }^{\mathrm{n}} \mathrm{C}_{4}(\sqrt[4]{2})^{\mathrm{n}-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}$ and the fifth term from the end is ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}-4}$
${ }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}={ }^{n} C_{4} \frac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}} \cdot \frac{1}{3}=\frac{n!}{6.4!(n-4)!}(\sqrt[4]{2})^{n}$
${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}={ }^{n} C_{n-4} \frac{(\sqrt[4]{3})^{4}}{(\sqrt[4]{3})^{n}}={ }^{n} C_{n-4} \cdot 2 \cdot \frac{3}{(\sqrt[4]{3})^{n}}=\frac{6 n!}{(n-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{n}}$.

Binomial Theorem

It is given that the ratio of the fifth term from the beginning to the fifth term from the end is $\sqrt{6}: 1$. Therefore, from (1) and (2), we obtain

$$
\begin{aligned}
& \frac{\mathrm{n}!}{6.4!(\mathrm{n}-4)!}(\sqrt[4]{2})^{\mathrm{n}}: \frac{6 \mathrm{n}!}{(\mathrm{n}-4)!4!} \cdot \frac{1}{(\sqrt[4]{3})^{\mathrm{n}}}=\sqrt{6}: 1 \\
& \Rightarrow \frac{(\sqrt[4]{2})^{\mathrm{n}}}{6}: \frac{6}{(\sqrt[4]{3})^{\mathrm{n}}}=\sqrt{6}: 1 \\
& \Rightarrow \frac{(\sqrt[4]{2})^{\mathrm{n}}}{6} \times \frac{(\sqrt[4]{3})^{\mathrm{n}}}{6}=\sqrt{6} \\
& \Rightarrow(\sqrt[4]{6})^{\mathrm{n}}=36 \sqrt{6} \\
& \Rightarrow 6^{\mathrm{n} / 4}=6^{5 / 2} \\
& \Rightarrow \frac{\mathrm{n}}{4}=\frac{5}{2} \\
& \Rightarrow \mathrm{n}=4 \times \frac{5}{2}=10
\end{aligned}
$$

Thus, the value of n is 10 .

Question 9:

Expand using Binomial Theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$

Solution 9:

$$
\begin{align*}
& \left(1+\frac{x}{2}-\frac{2}{x}\right)^{4} \\
& ={ }^{n} C_{0}\left(1+\frac{x}{2}\right)^{4}-{ }^{n} C_{1}\left(1+\frac{x}{2}\right)^{3}\left(\frac{2}{x}\right)+{ }^{n} C_{2}\left(1+\frac{x}{2}\right)^{2}\left(\frac{2}{x}\right)^{2}-{ }^{n} C_{3}\left(1+\frac{x}{2}\right)\left(\frac{2}{\mathrm{x}}\right)^{3}+{ }^{\mathrm{n}} \mathrm{C}_{4}\left(\frac{2}{\mathrm{x}}\right)^{4} \\
& =\left(1+\frac{\mathrm{x}}{2}\right)^{4}-4\left(1+\frac{\mathrm{x}}{2}\right)^{3}\left(\frac{2}{\mathrm{x}}\right)+6\left(1+\mathrm{x}+\frac{\mathrm{x}^{2}}{4}\right)\left(\frac{4}{\mathrm{x}^{2}}\right)-4\left(1+\frac{\mathrm{x}}{2}\right)\left(\frac{8}{\mathrm{x}^{3}}\right)+\frac{16}{\mathrm{x}^{4}} \\
& =\left(1+\frac{\mathrm{x}}{2}\right)^{4}-\frac{8}{\mathrm{x}}\left(1+\frac{\mathrm{x}}{2}\right)^{3}+\frac{24}{\mathrm{x}^{2}}+\frac{24}{\mathrm{x}}+6-\frac{32}{\mathrm{x}^{3}}-\frac{16}{\mathrm{x}^{2}}+\frac{16}{\mathrm{x}^{4}} \\
& =\left(1+\frac{\mathrm{x}}{2}\right)^{4}-\frac{8}{\mathrm{x}}\left(1+\frac{\mathrm{x}}{2}\right)^{3}+\frac{8}{\mathrm{x}^{2}}+\frac{24}{\mathrm{x}}+6-\frac{32}{\mathrm{x}^{3}}+\frac{16}{\mathrm{x}^{4}} \ldots . .(1) \tag{1}
\end{align*}
$$

Again by using Binomial Theorem, we obtain

$$
\left(1+\frac{x}{2}\right)^{4}={ }^{4} \mathrm{C}_{0}(1)^{4}+{ }^{4} \mathrm{C}_{1}(1)^{3}\left(\frac{\mathrm{x}}{2}\right)+{ }^{4} \mathrm{C}_{2}(1)^{2}\left(\frac{\mathrm{x}}{2}\right)^{2}+{ }^{4} \mathrm{C}_{3}(1)^{3}\left(\frac{\mathrm{x}}{2}\right)^{3}+{ }^{4} \mathrm{C}_{4}\left(\frac{\mathrm{x}}{2}\right)^{4}
$$

$$
\begin{align*}
& =1+4 \times \frac{x}{2}+6 \times \frac{x^{4}}{4}+4 \times \frac{x^{3}}{8}+\frac{x^{4}}{16} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16} \ldots \ldots .(2) \tag{2}\\
& \left(1+\frac{x}{2}\right)^{3}={ }^{3} C_{0}(1)^{3}+{ }^{3} C_{1}(1)^{2}\left(\frac{x}{2}\right)+{ }^{3} C_{2}(1)\left(\frac{x}{2}\right)+{ }^{3} C_{3}\left(\frac{x}{2}\right)^{3} \\
& =1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8} \ldots \ldots . .(3) \tag{3}
\end{align*}
$$

From (1), (2) and (3), we obtain
$\left[\left(1+\frac{x}{2}\right)-\frac{2}{x}\right]^{4}$
$=1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}\left(1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8}\right)+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
$=1+2 x+\frac{3}{2} x^{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-\frac{8}{x}-12-6 x-x^{2}+\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}}$
$=\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}-4 x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-5$

Question 10:

Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem.

Solution 10:

Using Binomial Theorem, the given expression $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ can be expanded as

$$
\begin{align*}
& {\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}} \\
& ={ }^{3} C_{0}\left(3 x^{2}-2 a x\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)+{ }^{3} C_{2}\left(3 x^{2}-2 a x\right)\left(3 a^{2}\right)^{2}+{ }^{3} C_{3}\left(3 a^{2}\right)^{3} \\
& =\left(3 x^{2}-2 a x\right)^{3}+3\left(9 x^{4}-12 a x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(9 a^{4}\right)+27 a^{6} \\
& =\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6} \\
& =\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6} \tag{1}
\end{align*}
$$

Again by using Binomial Theorem, we obtain

$$
\begin{align*}
& \left(3 x^{2}-2 a x\right)^{3} \\
& ={ }^{3} C_{0}\left(3 x^{2}\right)^{3}-{ }^{3} C_{1}\left(3 x^{2}\right)^{2}(2 a x)+{ }^{3} C_{2}\left(3 x^{2}\right)(2 a x)^{2}-{ }^{3} C_{3}(2 a x)^{3} \\
& =27 x^{6}-3\left(9 x^{4}\right)(2 a x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3} \\
& =27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3} \tag{2}
\end{align*}
$$

From (1) and (2), we obtain

$$
\begin{aligned}
& \left(3 x^{2}-2 a x+3 a^{2}\right)^{3} \\
& =27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6} \\
& =27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}
\end{aligned}
$$

