RD Sharma Solutions for Class 12 Maths Exercise 1.2 Chapter 1 Relation (Updated for 2024)

RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2

RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2: Students will mostly gain conceptual knowledge of equivalence relations through this practice. If a relation is reflexive, symmetric, and transitive, it is said to be an equivalence relationship. Class 12 is a crucial year for students in terms of shaping and achieving their long-term objectives. These RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2 problems’ solutions are created in a form of comprehensive manner, which develops students’ problem-solving abilities.

Download RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2 PDF

 


RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2

Access answers to Maths RD Sharma Solutions For Class 12 Chapter 1 – Relations Exercise 1.2 Question

1. Show that the relation R defined by R = {(a, b): a – b is divisible by 3; a, b ∈ Z} is an equivalence relation.

Solution:

Given R = {(a, b): a – b is divisible by 3; a, b ∈ Z} is a relation

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Let us check these properties on R.

Reflexivity: 

Let a be an arbitrary element of R. 

Then, a – a = 0 = 0 × 3

⇒ a − a is divisible by 3

⇒ (a, a) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b) ∈ R

⇒ a − b is divisible by 3

⇒ a − b = 3p for some p ∈ Z

⇒ b − a = 3 (−p)

Here, −p ∈ Z

⇒ b − a is divisible by 3

⇒ (b, a) ∈ R for all a, b ∈ Z

So, R is symmetric on Z.

Transitivity:

Let (a, b) and (b, c) ∈ R

⇒ a − b and b − c is divisible by 3

⇒ a – b = 3p for some p ∈ Z

And b − c = 3q for some q ∈ Z

Adding the above two equations, we get

a − b + b – c = 3p + 3q

⇒ a − c = 3 (p + q)

Here, p + q ∈ Z

⇒ a − c is divisible by 3

⇒ (a, c) ∈ R for all a, c ∈ Z

So, R is transitive on Z.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation to Z.

2. Show that the relation R on the set Z of integers, given by
R = {(a, b): 2 divides a – b}, is an equivalence relation.

Solution:

Given R = {(a, b): 2 divides a – b} is a relation defined on Z.

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Let us check these properties on R.

Reflexivity:

Let a be an arbitrary element of the set Z. 

Then, a ∈ R

⇒ a − a = 0 = 0 × 2

⇒ 2 divides a − a

⇒ (a, a) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b) ∈ R

⇒ 2 divides a − b

⇒ (a-b)/2 = p for some p ∈ Z

 ⇒ (b-a)/2 = – p

Here, −p ∈ Z

⇒ 2 divides b − a

⇒ (b, a) ∈ R for all a, b ∈ Z

So, R is symmetric on Z

Transitivity:

Let (a, b) and (b, c) ∈ R

⇒ 2 divides a−b and 2 divides b−c

⇒ (a-b)/2 = p and (b-c)/2 = q for some p, q ∈ Z

Adding the above two equations, we get

(a – b)/2 + (b – c)/2 = p + q

⇒ (a – c)/2 = p +q

Here, p+ q ∈ Z

⇒ 2 divides a − c

⇒ (a, c) ∈ R for all a, c ∈ Z

So, R is transitive on Z.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation on Z.

3. Prove that the relation R on Z defined by (a, b) ∈ R ⇔ a − b is divisible by 5 is an equivalence relation on Z.

Solution:

Given relation R on Z defined by (a, b) ∈ R ⇔ a − b is divisible by 5

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Let us check these properties on R.

Reflexivity:

Let a be an arbitrary element of R. Then,

⇒ a − a = 0 = 0 × 5

⇒ a − a is divisible by 5

⇒ (a, a) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b) ∈ R

⇒ a − b is divisible by 5

⇒ a − b = 5p for some p ∈ Z

⇒ b − a = 5 (−p)

Here, −p ∈ Z [Since p ∈ Z]

⇒ b − a is divisible by 5

⇒ (b, a) ∈ R for all a, b ∈ Z

So, R is symmetric on Z.

Transitivity:

Let (a, b) and (b, c) ∈ R

⇒ a − b is divisible by 5

⇒ a − b = 5p for some Z

Also, b − c is divisible by 5

⇒ b − c = 5q for some Z

Adding the above two equations, we get

a −b + b − c = 5p + 5q

⇒ a − c = 5 ( p + q )

⇒ a − c is divisible by 5

Here, p + q ∈ Z

⇒ (a, c) ∈ R for all a, c ∈ Z

So, R is transitive on Z.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation to Z.

4. Let n be a fixed positive integer. Define a relation R on Z as follows:
(a, b) ∈ R ⇔ a − b is divisible by n.
Show that R is an equivalence relation on Z.

Solution:

Given (a, b) ∈ R ⇔ a − b is divisible by n is a relation R defined on Z.

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Let us check these properties on R.

Reflexivity:

Let a ∈ N

Here, a − a = 0 = 0 × n

⇒ a − a is divisible by n

⇒ (a, a) ∈ R

⇒ (a, a) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b) ∈ R

Here, a − b is divisible by n

⇒ a − b = n p for some p ∈ Z

⇒ b − a = n (−p)

⇒ b − a is divisible by n [ p ∈ Z⇒ − p ∈ Z]

⇒ (b, a) ∈ R 

So, R is symmetric on Z.

Transitivity:

Let (a, b) and (b, c) ∈ R

Here, a − b is divisible by n, and b − c is divisible by n.

⇒ a − b= n p for some p ∈ Z

And b−c = n q for some q ∈ Z

a – b + b − c = n p + n q

⇒ a − c = n (p + q)

⇒ (a, c) ∈ R for all a, c ∈ Z

So, R is transitive on Z.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation to Z.

5. Let Z be the set of integers. Show that the relation R = {(a, b): a, b ∈ Z and a + b is even} is an equivalence relation on Z.

Solution:

Given R = {(a, b): a, b ∈ Z and a + b is even} is a relation defined on R.

Also given that Z be the set of integers

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Let us check these properties on R.

Reflexivity:

Let a be an arbitrary element of Z. 

Then, a ∈ R

Clearly, a + a = 2a is even for all a ∈ Z.

⇒ (a, a) ∈ R for all a ∈ Z

So, R is reflexive on Z.

Symmetry:

Let (a, b) ∈ R

⇒ a + b is even

⇒ b + a is even

⇒ (b, a) ∈ R for all a, b ∈ Z

So, R is symmetric on Z.

Transitivity:

Let (a, b) and (b, c) ∈ R

⇒ a + b and b + c are even

Now, let a + b = 2x for some x ∈ Z

And b + c = 2y for some y ∈ Z

Adding the above two equations, we get

A + 2b + c = 2x + 2y

⇒ a + c = 2 (x + y − b), which is even for all x, y, b ∈ Z

Thus, (a, c) ∈ R

So, R is transitive on Z.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation to Z

6. m is said to be related to n if m and n are integers and m − n is divisible by 13. Does this define an equivalence relation?

Solution:

Given that m is said to be related to n if m and n are integers and m − n is divisible by 13

Now we have to check whether the given relation is equivalence or not.

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Let R = {(m, n): m, n ∈ Z : m − n is divisible by 13}

Let us check these properties on R.

Reflexivity: 

Let m be an arbitrary element of Z. 

Then, m ∈ R

⇒ m − m = 0 = 0 × 13

⇒ m − m is divisible by 13

⇒ (m, m) is reflexive on Z.

Symmetry: 

Let (m, n) ∈ R. 

Then, m − n is divisible by 13

⇒ m − n = 13p

Here, p ∈ Z

⇒ n – m = 13 (−p) 

Here, −p ∈ Z

⇒ n − m is divisible by 13

⇒ (n, m) ∈ R for all m, n ∈ Z 

So, R is symmetric on Z.

Transitivity: 

Let (m, n) and (n, o) ∈R

⇒ m − n, and n − o are divisible by 13

⇒ m – n = 13p and n − o = 13q for some p, q ∈ Z

Adding the above two equations, we get

m – n + n − o = 13p + 13q

⇒ m−o = 13 (p + q)

Here, p + q ∈ Z

⇒ m − o is divisible by 13

⇒ (m, o) ∈ R for all m, o ∈ Z

So, R is transitive on Z.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation to Z.

7. Let R be a relation on the set A of ordered pair of integers defined by (x, y) R (u, v) if xv = y u. Show that R is an equivalence relation.

Solution:

First, let R be a relation on A

It is given that set A of ordered pair of integers defined by (x, y) R (u, v) if xv = y u

Now we have to check whether the given relation is equivalence or not.

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Reflexivity: 

Let (a, b) be an arbitrary element of set A. 

Then, (a, b) ∈ A

⇒ a b = b a

⇒ (a, b) R (a, b)

Thus, R is reflexive on A.

Symmetry: 

Let (x, y) and (u, v) ∈A such that (x, y) R (u, v). Then,

 x v = y u

⇒ v x = u y

⇒ u y = v x

⇒ (u, v) R (x, y)

So, R is symmetric on A.

Transitivity:

Let (x, y), (u, v) and (p, q) ∈R such that (x, y) R (u, v) and (u, v) R (p, q)

⇒ x v = y u and u q = v p

Multiplying the corresponding sides, we get

x v × u q = y u × v p

⇒ x q = y p

⇒ (x, y) R (p, q)

So, R is transitive on A.

Therefore R is reflexive, symmetric, and transitive.

Hence, R is an equivalence relation to A.

8. Show that the relation R on the set A = {x ∈ Z; 0 ≤ x ≤ 12}, given by R = {(a, b): a = b}, is an equivalence relation. Find the set of all elements related to 1.

Solution:

Given set A = {x ∈ Z; 0 ≤ x ≤ 12}

Also given that relation R = {(a, b): a = b} is defined on set A

Now we have to check whether the given relation is equivalence or not.

To prove equivalence relation the given relation must be reflexive, symmetric, and transitive.

Reflexivity: 

Let a be an arbitrary element of A.

Then, a ∈ R

⇒ a = a [Since every element is equal to itself]

⇒ (a, a) ∈ R for all a ∈ A

So, R is reflexive on A.

Symmetry: 

Let (a, b) ∈ R

⇒ a b

⇒ b = a

⇒ (b, a) ∈ R for all a, b ∈ A

So, R is symmetric on A.

Transitivity: 

Let (a, b) and (b, c) ∈ R

⇒ a =b and b = c

⇒ a = b c

⇒ a = c

⇒ (a, c) ∈ R

So, R is transitive on A.

Hence, R is an equivalence relation to A.

Therefore R is reflexive, symmetric, and transitive.

The set of all elements related to 1 is {1}.

RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2: Important Topics From The Chapter

Let us have a look at the important topics covered in this exercise.

  • Types of relations
    • Void relation
    • Universal relation
    • Identity relation
    • Reflexive relation
    • Symmetric relation
    • Transitive relation
    • Antisymmetric relation
We have provided complete details of RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2. If you have any queries related to CBSE Class 12 Exam, feel free to ask us in the comment section below.

FAQs on RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2

How many questions are there in RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2?

There are a total of 8 questions in RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2.

Is RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2 free?

Yes, You can get RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2 for free.

Where can I download RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2 free PDF?

You can download RD Sharma Solutions Class 12 Maths Chapter 1 Exercise 1.2 free PDF from the above article.

Leave a Comment

Top 10 Professional Courses With High-Paying Jobs 2024 Top 8 Online MCA Colleges in India 2024 Skills You Will Gain from an Online BBA Programme How to stay motivated during distance learning Things to know before starting with first year of medical school