RD Sharma Solutions Class 11 Maths Chapter 8 Exercise 8.1 (Updated For 2024)

RD Sharma Class 11 Solutions Chapter 8 Exercise 8.1

RD Sharma Solutions Class 11 Maths Chapter 8 Exercise 8.1: As per the current CBSE Syllabus RD Sharma Solutions Class 11 Maths are originally designed.  It is advised to prepare for your Class 11 Maths exams with the RD Sharma Solutions Class 11 Maths Chapter 8 Exercise 8.1. Subject matter experts have designed easy-to-understand solutions just for your benefit.

Download RD Sharma Solutions Class 11 Maths Chapter 8 Exercise 8.1 PDF:

RD Sharma Class 11 Solutions Chapter 8 Exercise 8.1

 


Access answers of RD Sharma Solutions Class 11 Maths Chapter 8 Exercise 8.1

1. Express each of the following as the sum or difference of sines and cosines:
(i) 2 sin 3x cos x
(ii) 2 cos 3x sin 2x
(iii) 2 sin 4x sin 3x
(iv) 2 cos 7x cos 3x

Solution:

(i) 2 sin 3x cos x

By using the formula,

2 sin A cos B = sin (A + B) + sin (A – B)

2 sin 3x cos x = sin (3x + x) + sin (3x – x)

= sin (4x) + sin (2x)

= sin 4x + sin 2x


(ii) 2 cos 3x sin 2x

By using the formula,

2 cos A sin B = sin (A + B) – sin (A – B)

2 cos 3x sin 2x = sin (3x + 2x) – sin (3x – 2x)

= sin (5x) – sin (x)

= sin 5x – sin x


(iii) 2 sin 4x sin 3x

By using the formula,

2 sin A sin B = cos (A – B) – cos (A + B)

2 sin 4x sin 3x = cos (4x – 3x) – cos (4x + 3x)

= cos (x) – cos (7x)

= cos x – cos 7x


(iv) 2 cos 7x cos 3x

By using the formula,

2 cos A cos B = cos (A + B) + cos (A – B)

2 sin 3x cos x = cos (7x + 3x) + cos (7x – 3x)

= cos (10x) + cos (4x)

= cos 10x + cos 4x

2. Prove that:
(i) 2 sin 5π/12 sin π/12 = 1/2

(ii) 2 cos 5π/12 cos π/12 = 1/2

(iii) 2 sin 5π/12 cos π/12 = (√3 + 2)/2

Solution:

(i) 2 sin 5π/12 sin π/12 = 1/2

By using the formula,

2 sin A sin B = cos (A – B) – cos (A + B)

2 sin 5π/12 sin π/12 = cos (5π/12 – π/12) – cos (5π/12 + π/12)

= cos (4π/12) – cos (6π/12)

= cos (π/3) – cos (π/2)

= cos (180o/3) – cos (180o/2)

= cos 60° – cos 90°

= 1/2 – 0

= 1/2

Hence Proved.

(ii) 2 cos 5π/12 cos π/12 = 1/2

By using the formula,

2 cos A cos B = cos (A + B) + cos (A – B)

2 cos 5π/12 cos π/12 = cos (5π/12 + π/12) + cos (5π/12 – π/12)

= cos (6π/12) + cos (4π/12)

= cos (π/2) + cos (π/3)

= cos (180o/2) + cos (180o/3)

= cos 90° + cos 60°

= 0 + 1/2

= 1/2

Hence Proved.

(iii) 2 sin 5π/12 cos π/12 = (√3 + 2)/2

By using the formula,

2 sin A cos B = sin (A + B) + sin (A – B)

2 sin 5π/12 cos π/12 = sin (5π/12 + π/12) + sin (5π/12 – π/12)

= sin (6π/12) + sin (4π/12)

= sin (π/2) + sin (π/3)

= sin (180o/2) + sin (180o/3)

= sin 90° + sin 60°

= 1 + √3

= (2 + √3)/2

= (√3 + 2)/2

Hence Proved.

3. show that:

(i) sin 50o cos 85o = (1 – √2sin 35o)/2√2

(ii) sin 25o cos 115o = 1/2 {sin 140o – 1}

Solution:

(i) sin 50o cos 85o = (1 – √2sin 35o)/2√2

By using the formula,

2 sin A cos B = sin (A + B) + sin (A – B)

sin A cos B = [sin (A + B) + sin (A – B)] / 2

sin 50o cos 85o = [sin(50o + 85o) + sin (50o – 85o)] / 2

= [sin (135o) + sin (-35o)] / 2

= [sin (135o) – sin (35o)] / 2 (since, sin (-x) = -sin x)

= [sin (180o – 45o) – sin 35o] / 2

= [sin 45o – sin 35o] / 2

= [(1/√2) – sin 35o] / 2

= [(1 – sin 35o)/2] / 2

= (1 – sin 35o) / 22

Hence proved.

(ii) sin 25o cos 115o = 1/2 {sin 140o – 1}

By using the formula,

2 sin A cos B = sin (A + B) + sin (A – B)

sin A cos B = [sin (A + B) + sin (A – B)] / 2

sin 20o cos 115o = [sin(25o + 115o) + sin (25o – 115o)] / 2

= [sin (140o) + sin (-90o)] / 2

= [sin (140o) – sin (90o)] / 2 (since, sin (-x) = -sin x)

= 1/2 {sin 140o – 1}

Hence proved.

4. Prove that:

4 cos x cos (π/3 + x) cos (π/3 – x) = cos 3x

Solution:

Let us consider LHS:

4 cos x cos (π/3 + x) cos (π/3 – x) = 2 cos x (2 cos (π/3 + x) cos (π/3 – x))

By using the formula,

2 cos A cos B = cos (A + B) + cos (A – B)

2 cos x (2 cos (π/3+x) cos (π/3 – x)) = 2 cos x (cos (π/3+x + π/3-x) + cos (π/3+x – π/3+ x))

= 2 cos x (cos (2π/3) + cos (2x))

= 2 cos x {cos 120° + cos 2x}

= 2 cos x {cos (180° – 60°) + cos 2x}

= 2 cos x (cos 2x – cos 60°) (since, {cos (180° – A) = – cos A})

= 2 cos 2x cos x – 2 cos x cos 60°

= (cos (x + 2x) + cos (2x – x)) – (2cos x)/2

= cos 3x + cos x – cos x

= cos 3x

= RHS

Hence Proved.

To Know more about the CBSE Class 11 Maths exam, ask in the comments. 

FAQs on RD Sharma Solutions Class 11 Maths Chapter 8 Exercise 8.1

How much does it cost to download the PDF of RD Sharma Solutions for Class 11 Maths Chapter 8 Exercise 8.1?

You can download it for free.

How many questions are there in RD Sharma Solutions for Class 11 Maths Chapter 8 Exercise 8.1?

There are 8 questions in RD Sharma Solutions for Class 11 Maths Chapter 8 Exercise 8.1.

From where can I download the PDF of RD Sharma Solutions for Class 11 Maths Chapter 8 Exercise 8.1?

You can find the download link from the above blog.

Leave a Comment

Top 10 Professional Courses With High-Paying Jobs 2024 Top 8 Online MCA Colleges in India 2024 Skills You Will Gain from an Online BBA Programme How to stay motivated during distance learning Things to know before starting with first year of medical school