RD Sharma Class 11 Solutions Chapter 7 Exercise 7.2: To ace your Class 11 Maths exam you must study from RD Sharma Solutions Class 11 Maths. You can download the Free PDF of RD Sharma Solutions Class 11 Maths Chapter 7 Exercise 7.2. All your doubts will be cleared easily here.
Download RD Sharma Solutions Class 11 Maths Chapter 7 Exercise 7.2 PDF
RD Sharma Class 11 Solutions Chapter 7 Exercise 7.2
RD Sharma Solutions Class 11 Maths Chapter 7 Exercise 7.2
1. Find the maximum and minimum values of each of the following trigonometrical expressions:
(i) 12 sin x – 5 cos x
(ii) 12 cos x + 5 sin x + 4
(iii) 5 cos x + 3 sin (π/6 – x) + 4
(iv) sin x – cos x + 1
Solution:
We know that the maximum value of A cos α + B sin α + C is C + √(A2 +B2),
And the minimum value is C – √(a2 +B2).
(i) 12 sin x – 5 cos x
Given: f(x) = 12 sin x – 5 cos x
Here, A = -5, B = 12 and C = 0
–√((-5)2 + 122) ≤ 12 sin x – 5 cos x ≤ √((-5)2 + 122)
–√(25+144) ≤ 12 sin x – 5 cos x ≤ √(25+144)
–√169 ≤ 12 sin x – 5 cos x ≤ √169
-13 ≤ 12 sin x – 5 cos x ≤ 13
Hence, the maximum and minimum values of f(x) are 13 and -13, respectively.
(ii) 12 cos x + 5 sin x + 4
Given: f(x) = 12 cos x + 5 sin x + 4
Here, A = 12, B = 5 and C = 4
4 – √(122 + 52) ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √(122 + 52)
4 – √(144+25) ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √(144+25)
4 –√169 ≤ 12 cos x + 5 sin x + 4 ≤ 4 + √169
-9 ≤ 12 cos x + 5 sin x + 4 ≤ 17
Hence, the maximum and minimum values of f(x) are -9 and 17, respectively.
(iii) 5 cos x + 3 sin (π/6 – x) + 4
Given: f(x) = 5 cos x + 3 sin (π/6 – x) + 4
We know that sin (A – B) = sin A cos B – cos A sin B
f(x) = 5 cos x + 3 sin (π/6 – x) + 4
= 5 cos x + 3 (sin π/6 cos x – cos π/6 sin x) + 4
= 5 cos x + 3/2 cos x – 3√3/2 sin x + 4
= 13/2 cos x – 3√3/2 sin x + 4
So, here A = 13/2, B = – 3√3/2, C = 4
4 – √[(13/2)2 + (-3√3/2)2] ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + √[(13/2)2 + (-3√3/2)2]
4 – √[(169/4) + (27/4)] ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + √[(169/4) + (27/4)]
4 – 7 ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 4 + 7
-3 ≤ 13/2 cos x – 3√3/2 sin x + 4 ≤ 11
Hence, the maximum and minimum values of f(x) are -3 and 11, respectively.
(iv) sin x – cos x + 1
Given: f(x) = sin x – cos x + 1
So, here A = -1, B = 1 And c = 1
1 – √[(-1)2 + 12] ≤ sin x – cos x + 1 ≤ 1 + √[(-1)2 + 12]
1 – √(1+1) ≤ sin x – cos x + 1 ≤ 1 + √(1+1)
1 – √2 ≤ sin x – cos x + 1 ≤ 1 + √2
Hence, the maximum and minimum values of f(x) are 1 – √2 and 1 + √2, respectively.
2. Reduce each of the following expressions to the Sine and Cosine of a single expression:
(i) √3 sin x – cos x
(ii) cos x – sin x
(iii) 24 cos x + 7 sin x
Solution:
(i) √3 sin x – cos x
Let f(x) = √3 sin x – cos x
Dividing and multiplying by √((√3)2 + 12) i.e. by 2
f(x) = 2(√3/2 sin x – 1/2 cos x)
Sine expression:
f(x) = 2(cos π/6 sin x – sin π/6 cos x) (since, √3/2 = cos π/6 and 1/2 = sin π/6)
We know that sin A cos B – cos A sin B = sin (A – B)
f(x) = 2 sin (x – π/6)
Again,
f(x) = 2(√3/2 sin x – 1/2 cos x)
Cosine expression:
f(x) = 2(sin π/3 sin x – cos π/3 cos x)
We know that cos A cos B – sin A sin B = cos (A + B)
f(x) = -2 cos(π/3 + x)
(ii) cos x – sin x
Let f(x) = cos x – sin x
Dividing and multiplying by √(12 + 12) i.e. by √2,
f(x) = √2(1/√2 cos x – 1/√2 sin x)
Sine expression:
f(x) = √2(sin π/4 cos x – cos π/4 sin x) (since, 1/√2 = sin π/4 and 1/√2 = cos π/4)
We know that sin A cos B – cos A sin B = sin (A – B)
f(x) = √2 sin (π/4 – x)
Again,
f(x) = √2(1/√2 cos x – 1/√2 sin x)
Cosine expression:
f(x) = 2(cos π/4 cos x – sin π/4 sin x)
We know that cos A cos B – sin A sin B = cos (A + B)
f(x) = √2 cos (π/4 + x)
(iii) 24 cos x + 7 sin x
Let f(x) = 24 cos x + 7 sin x
Dividing and multiplying by √((√24)2 + 72) = √625 i.e. by 25,
f(x) = 25(24/25 cos x + 7/25 sin x)
Sine expression:
f(x) = 25(sin α cos x + cos α sin x) where, sin α = 24/25 and cos α = 7/25
We know that sin A cos B + cos A sin B = sin (A + B)
f(x) = 25 sin (α + x)
Cosine expression:
f(x) = 25(cos α cos x + sin α sin x) where, cos α = 24/25 and sin α = 7/25
We know that cos A cos B + sin A sin B = cos (A – B)
f(x) = 25 cos (α – x)
3. Show that Sin 100o – Sin 10o is positive.
Solution:
Let f(x) = sin 100° – sin 10°
Dividing And multiplying by √(12 + 12) i.e. by √2,
f(x) = √2(1/√2 sin 100o – 1/√2 sin 10o)
f(x) = √2(cos π/4 sin (90+10)o – sin π/4 sin 10o) (since, 1/√2 = cos π/4 and 1/√2 = sin π/4)
f(x) = √2(cos π/4 cos 10o – sin π/4 sin 10o)
We know that cos A cos B – sin A sin B = cos (A + B)
f(x) = √2 cos (π/4 + 10o)
∴ f(x) = √2 cos 55°
4. Prove that (2√3 + 3) sin x + 2√3 cos x lies between – (2√3 + √15) and (2√3 + √15).
Solution:
Let f(x) = (2√3 + 3) sin x + 2√3 cos x
Here, A = 2√3, B = 2√3 + 3 and C = 0
– √[(2√3)2 + (2√3 + 3)2] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[(2√3)2 + (2√3 + 3)2]
– √[12+12+9+12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[12+12+9+12√3]
– √[33+12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[33+12√3]
– √[15+12+6+12√3] ≤ (2√3 + 3) sin x + 2√3 cos x ≤ √[15+12+6+12√3]
We know that (12√3 + 6 < 12√5) because the value of √5 – √3 is more than 0.5
So if we replace (12√3 + 6 with 12√5), the above inequality still holds.
So by rearranging the above expression √(15+12+12√5)we get, 2√3 + √15
– 2√3 + √15 ≤ (2√3 + 3) sin x + 2√3 cos x ≤ 2√3 + √15
Hence proved.
This is the complete blog on RD Sharma Solutions For Class 11 Maths Chapter 7 Exercise 7.2. To Know more about the CBSE. Class 11 Maths exam, ask in the comments.
FAQs on RD Sharma Solutions For Class 11 Maths Chapter 7 Exercise 7.2
Is it even beneficial to study RD Sharma Solutions Class 11 Maths Chapter 7 Exercise 7.2?
Yes, your preparation will be strengthened with this amazing help book. All your questions will be answered by this book.
Can I access the RD Sharma Solutions for Class 11 Maths Chapter 7 Exercise 7.2 PDF offline?
Once you have downloaded the PDF online, you can access it offline as well.
How many questions are there in RD Sharma Solutions for Class 11 Maths Chapter 7 Exercise 7.2?
There are 4 questions in RD Sharma Solutions Class 11 Maths Chapter 7 Exercise 7.2.