RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4 (Updated for 2024)

RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4

RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4: You can always clear your doubts and get help in getting good marks in your Class 9 Maths exams with RD Sharma Solutions Class 9 Maths. It is important to understand everything from the core and you can do it by practicing the questions of RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4.  

Download RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4 PDF

RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4

 


Access answers of RD Sharma Class 9 Solutions Chapter 4 Exercise 4.4

Question 1: Find the following products:

(i) (3x + 2y)(9x2 – 6xy + 4y2)

(ii) (4x – 5y)(16x2 + 20xy + 25y2)

(iii) (7p4 + q)(49p8 – 7p4q + q2)

(iv) (x/2 + 2y)(x2/4 – xy + 4y2)

(v) (3/x – 5/y)(9/x2 + 25/y2 + 15/xy)

(vi) (3 + 5/x)(9 – 15/x + 25/x2)

(vii) (2/x + 3x)(4/x+ 9x– 6)

(viii) (3/x – 2x2)(9/x+ 4x4 – 6x)

(ix) (1 – x)(1 + x + x2)

(x) (1 + x)(1 – x + x2)

(xi) (x– 1)(x4 + x+1)

(xii) (x+ 1)(x6 – x3 + 1)

Solution:

(i) (3x + 2y)(9x2 – 6xy + 4y2)

= (3x + 2y)[(3x)2 – (3x)(2y) + (2y)2)]

We know, a3 + b3 = (a + b)(a2 + b2 – ab)

= (3x)3 + (2y) 3

= 27x3 + 8y3

(ii) (4x – 5y)(16x2 + 20xy + 25y2)

= (4x – 5y)[(4x)2 + (4x)(5y) + (5y)2)]

We know, a3 – b3 = (a – b)(a2 + b2 + ab)

= (4x)3 – (5y) 3

= 64x3 – 125y3

(iii) (7p4 + q)(49p8 – 7p4q + q2)

= (7p4 + q)[(7p4)2 – (7p4)(q) + (q)2)]

We know, a3 + b3 = (a + b)(a2 + b2 – ab)

= (7p4)3 + (q) 3

= 343 p12 + q3

(iv) (x/2 + 2y)(x2/4 – xy + 4y2)

We know, a3 – b3 = (a – b)(a2 + b2 + ab)

(x/2 + 2y)(x2/4 – xy + 4y2)

RD sharma class 9 maths chapter 4 ex 4.4 question 2 Solution

(v) (3/x – 5/y)(9/x2 + 25/y2 + 15/xy)

RD sharma class 9 maths chapter 4 ex 4.4

[Using a3 – b3 = (a – b)(a2 + b2 + ab) ]

(vi) (3 + 5/x)(9 – 15/x + 25/x2)

RD sharma class 9 maths chapter 4 ex 4.4 solution

[Using: a3 + b3 = (a + b)(a2 + b2 – ab)]

(vii) (2/x + 3x)(4/x+ 9x– 6)

RD sharma class 9 maths chapter 4 ex 4.4 question 1

[Using: a3 + b3 = (a + b)(a2 + b2 – ab)]

(viii) (3/x – 2x2)(9/x+ 4x4 – 6x)

RD sharma class 9 maths chapter 4 ex 4.4 question 1 solution

[Using : a3 – b3 = (a – b)(a2 + b2 + ab)]

(ix) (1 – x)(1 + x + x2)

And we know, a3 – b3 = (a – b)(a2 + b2 + ab)

(1 – x)(1 + x + x2) can be written as

(1 – x)[(12 + (1)(x)+ x2)]

= (1)3 – (x)3

= 1 – x3

(x) (1 + x)(1 – x + x2)

And we know, a3 + b3 = (a + b)(a2 + b2 – ab)]

(1 + x)(1 – x + x2) can be written as,

(1 + x)[(12 – (1)(x) + x2)]

= (1)3 + (x) 3

= 1 + x3

(xi) (x– 1)(x4 + x+1) can be written as,

(x2 – 1)[(x2)2 – 12 + (x2)(1)]

= (x2)3 – 13

= x6 – 1

[using a3 – b3 = (a – b)(a2 + b2 + ab) ]

(xii) (x+ 1)(x6 – x3 + 1) can be written as,

(x3 + 1)[(x3)2 – (x3)(1) + 12]

= (x3) 3 + 13

= x9 + 1

[using a3 + b3 = (a + b)(a2 + b2 – ab) ]

Question 2: If x = 3 and y = -1, find the values of each of the following using in identity:

(i) (9y2 – 4x2)(81y4 + 36x2y2 + 16x4)

(ii) (3/x – x/3)(x2 /9 + 9/x2 + 1)

(iii) (x/7 + y/3)(x2/49 + y2/9 – xy/21)

(iv) (x/4 – y/3)(x2/16 + xy/12 + y2/9)
(v) (5/x + 5x)(25/x2 – 25 + 25x2)

Solution:

(i) (9y2 – 4x2)(81y4 + 36x2y2 + 16x4)

= (9y2 – 4x2) [(9y2 ) 2 + 9y2 x 4x+ (4x2) 2 ]

= (9y2 ) 3 – (4x2)3

= 729 y6 – 64 x6

Put x = 3 and y = -1

= 729 – 46656

= – 45927

(ii) Put x = 3 and y = -1

(3/x – x/3)(x2 /9 + 9/x2 + 1)

RD sharma class 9 maths chapter 4 ex 4.4 question 2 solution part 2

(iii) Put x = 3 and y = -1

(x/7 + y/3)(x2/49 + y2/9 – xy/21)

RD sharma class 9 maths chapter 4 ex 4.4 question 2 solution part 3

(iv) Put x = 3 and y = -1

(x/4 – y/3)(x2/16 + xy/12 + y2/9)

RD sharma class 9 maths chapter 4 ex 4.4 question 2 solution part 4

(v) Put x = 3 and y = -1

(5/x + 5x)(25/x2 – 25 + 25x2)

RD sharma class 9 maths chapter 4 ex 4.4 question 2 solution part 5

Question 3: If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.

Solution:

a + b = 10, ab = 16

Squaring, a + b = 10, both sides

(a + b)2 = (10)2

a2 + b2 + 2ab = 100

a2 + b2 + 2 x 16 = 100

a2 + b2 + 32 = 100

a2 + b2 = 100 – 32 = 68

a2 + b2 = 68

Again, a2 – ab + b2 = a2 + b2 – ab = 68 – 16 = 52 and

a2 + ab + b2 = a2 + b2 + ab = 68 + 16 = 84

Question 4: If a + b = 8 and ab = 6, find the value of a3 + b3.

Solution:

a + b = 8, ab = 6

Cubing, a + b = 8, both sides, we get

(a + b)3 = (8)3

a3 + b3 + 3ab(a + b) = 512

a3 + b3 + 3 x 6 x 8 = 512

a3 + b3 + 144 = 512

a3 + b3 = 512 – 144 = 368

a3 + b3 = 368

This is the complete blog of RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.4. To know more about the CBSE Class 9 Maths exam, ask in the comments. 

FAQs on RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.4

How many questions are there in RD Sharma Solutions for Class 9 Maths Chapter 4 Exercise 4.4?

There are 6 questions in RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.4.

From where can I download the PDF of RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.4?

You can find the download link from the above blog.

How much does it cost to download the PDF of RD Sharma Solutions for Class 9 Maths Chapter 4 Exercise 4.4?

You can download it for free.

Leave a Comment

10 smart tips to improve your English-speaking skills 9 Top Tips for Everyday Study Success Top 10 Arts And Science Colleges In 2025 100% Job Guarantee Course in 2025 Best Colleges in Hyderabad 2025