RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4 are available here. By practicing RD Sharma Class 9 solutions, students can earn higher academic degrees. Our experts solve these solutions with the utmost precision to help students learn. You can download RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4 from the link provided below.
Download RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4
Go through the RD Sharma Ex 13.4 Class 9 Solutions PDF:
RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4
Access RD Sharma Exercise 13.4 Class 9th Solutions
Question 1.
In an ∆ABC, D, E, and F are respectively, the mid-points of BC, CA, and AB. If the lengths of side AB, BC, and CA are 7cm, 8cm, and 9cm, respectively, find the perimeter of ∆DEF.
Solution:
In ∆ABC, D, E, and F are the mid-points of sides,
BC, CA, and AB respectively
AB = 7cm, BC = 8cm and CA = 9cm
∵ D and E are the midpoints of BC and CA
∴ DE || AB and DE =12 AB =12 x 7 = 3.5cm
Similarly,
Question 2.
In a triangle ∠ABC, ∠A = 50°, ∠B = 60° and ∠C = 70°. Find the measures of the angles of the triangle formed by joining the mid-points of the sides of this triangle.
Solution:
In ∆ABC,
∠A = 50°, ∠B = 60° and ∠C = 70°
D, E, and F are the midpoints of sides BC, CA, and AB respectively
DE, EF, and ED are joined
∵ D, E, and F are the midpoints of sides BC, CA, and AB respectively
∴ EF || BC
DE || AB and FD || AC
∴ BDEF and CDEF are parallelogram
∴ ∠B = ∠E = 60° and ∠C = ∠F = 70°
Then ∠A = ∠D = 50°
Hence ∠D = 50°, ∠E = 60° and ∠F = 70°
Question 3.
In a triangle, P, Q, and R are the mid-points of sides BC, CA, and AB respectively. If AC = 21 cm, BC = 29cm, and AB = 30cm, find the perimeter of the quadrilateral ARPQ.
Solution:
P, Q, and R are the midpoints of sides BC, CA, and AB respectively
AC = 21 cm, BC = 29 cm and AB = 30°
∵ P, Q, R, and the midpoints of sides BC, CA, and AB respectively.
∴ PQ || AB and PQ = 12 AB
Question 4.
In an ∆ABC median AD is produced to X such that AD = DX. Prove that ABXC is a parallelogram.
Solution:
Given: In ∆ABC, AD is median and AD is produced to X such that DX = AD
To prove : ABXC is a parallelogram
Construction: Join BX and CX
Proof: In ∆ABD and ∆CDX
AD = DX (Given)
BD = DC (D is midpoints)
∠ADB = ∠CDX (Vertically opposite angles)
∴ ∆ABD ≅ ∆CDX (SAS criteria)
∴ AB = CX (c.p.c.t.)
and ∠ABD = ∠DCX
But these are alternate angles
∴ AB || CX and AB = CX
∴ ABXC is a parallelogram.
Question 5.
In ∆ABC, E, and F are the mid-points of AC and AB respectively. The altitude AP to BC intersects FE at Q. Prove that AQ = QP.
Solution:
Given: In ∆ABC, E, and F are the mid-points of AC and AB respectively.
EF is joined.
AP ⊥ BC is drawn which intersects EF at Q and meets BC at P.
To prove: AQ = QP
proof: In ∆ABC
E and F are the midpoints of AC and AB
∴ EF || BC and EF = 12BC
∴ ∠F = ∠B
In ∆ABP,
F is midpoint of AB and Q is the midpoint of FE or FQ || BC
∴ Q is midpoint of AP,
∴ AQ = QP
Question 6.
In an ∆ABC, BM, and CN are perpendiculars from B and C respectively on any line passing through A. If L is the mid-point of BC, prove that ML NL.
Solution:
In ∆ABC,
BM and CN are perpendicular on a line drawn from A. L is the midpoint of BC. ML and NL are joined.
Question 7.
In the figure triangle, ABC is right-angled at B. Given that AB = 9cm. AC = 15cm and D, E are the midpoints of the sides AB and AC respectively, calculate.
(i) The length of BC
(ii) The area of ∆ADC
Solution:
In ∆ABC, ∠B = 90°
AC =15 cm, AB = 9cm
D and E are the midpoints of sides AB and AC respectively and D, and E are joined.
Question 8.
In the figure, M, N, and P are the midpoints of AB, AC, and BC respectively. If MN = 3 cm, NP = 3.5cm, and MP = 2.5cm, calculate BC, AB, and AC.
Solution:
In ∆ABC,
M, N, and P are the mid points of sides, AB, AC, and BC respectively.
Question 9.
In the figure, AB = AC and CP || BA and AP are the bisector of the exterior ∠CAD of ∆ABC. Prove that (i) ∠PAC = ∠BCA (ii) ABCP is a parallelogram.
Solution:
Given: In ABC, AB = AC
nd CP || BA, AP is the bisector of exterior ∠CAD of ∆ABC
To prove :
(i) ∠PAC = ∠BCA
(ii) ABCP is a ||gm
Proof : (i) In ∆ABC,
∵ AB =AC
∴ ∠C = ∠B (Angles opposite to equal sides) and ext.
∠CAD = ∠B + ∠C
= ∠C + ∠C = 2∠C ….(i)
∵ AP is the bisector of ∠CAD
∴ 2∠PAC = ∠CAD …(ii)
From (i) and (ii)
∠C = 2∠PAC
∠C = ∠CAD or ∠BCA = ∠PAC
Hence ∠PAC = ∠BCA
(ii) But there are alternate angles,
∴ AD || BC
But BA || CP
∴ ABCP is a ||gm.
Question 10.
ABCD is a kite having AB = AD and BC = CD. Prove that the figure formed by joining the mid-points of the sides, in order, is a rectangle.
Solution:
Given: In the figure, ABCD is a kite in which AB = AD and BC = CD.
P, Q, R, and S are the mid points of the sides AB, BC, CD, and DA respectively.
To prove: PQRS is a rectangle.
Construction: Join AC and BD.
Proof: In ∆ABD,
P and S are midpoints of AB and AD
∴ PS || BD and PS = 12 BD …(i)
Similarly in ∆BCD,
Q and R the midpoints of BC and CD
∴ QR || BD and
QR = 12 BD …(ii)
∴ Similarly, we can prove that PQ || SR and PQ = SR …(iii)
From (i) and (ii) and (iii)
PQRS is a parallelogram,
∵ AC and BD intersect each other at right angles.
∴ PQRS is a rectangle.
Question 11.
Let ABC be an isosceles triangle in which AB = AC. If D, E, and F be the mid-points of the sides BC, CA, and AB respectively, show that the segment AD and EF bisect each other at right angles.
Solution:
In ∆ABC, AB = AC
D, E, and F are the midpoints of the sides BC, CA, and AB respectively,
AD and EF are joined intersecting at O
To prove: AD and EF bisect each other at right angles.
Construction: Join DE and DF.
Proof : ∵ D, E, and F are the mid-points of
the sides BC, CA, and AB respectively
∴ AFDE is a ||gm
∴ AF = DE and AE = DF
But AF = AE
(∵ E and F are mid-points of equal sides AB and AC)
∴ AF = DF = DE = AE
∴AFDE is a rhombus
∵ The diagonals of a rhombus bisect each other at a right angle.
∴ AO = OD and EO = OF
Hence, AD and EF bisect each other at right angles.
Question 12.
Show that the line segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.
Solution:
Given: In quad. ABCD,
P, Q, R, and S are the midpoints of sides AB, BC, CD, and DA respectively.
PR and QS to intersect each other at O
To prove: PO = OR and QO = OS
Construction: Join PQ, QR, RS, and SP, and also join AC.
Proof: In ∆ABC
P and Q are the mid-points of AB and BC
∴ PQ || AC and PQ = 12 AC …(i)
Similarly ∆ADC,
S and R are the mid-points of AD and CD
∴ SR || AC and SR = 12 AC ..(ii)
from (i) and (ii)
PQ = SQ and PQ || SR
PQRS is a ||gm (∵ opposite sides are equal area parallel)
But the diagonals of a ||gm bisect each other.
∴ PR and QS bisect each other.
Question 13.
Fill in the blanks to make the following statements correct :
(i) The triangle formed by joining the mid-points of the sides of an isosceles triangle is …
(ii) The triangle formed by joining the mid-points of the sides of a right triangle is …
(iii) The figure formed by joining the mid-points of consecutive sides of a quadrilateral is …
Solution:
(i) The triangle formed by joining the mid-points of the sides of an isosceles triangle is an isosceles triangle.
(ii) The triangle formed by joining the mid-points of the sides of a right triangle is a right triangle.
(iii) The figure formed by joining the mid-points of consecutive sides of a quadrilateral is a parallelogram.
Question 14.
ABC is a triangle and through A, B, and C lines are drawn parallel to BC, CA, and AB respectively intersecting at P, Q, and R. Prove that the perimeter of ∆PQR is double the perimeter of ∆ABC.
Solution:
Given: In ∆ABC,
Through A, B, and C, lines are drawn parallel to BC, CA, and AB respectively meeting at P, Q, and R.
To prove : Perimeter of ∆PQR = 2 x perimeter of ∆ABC
Proof : ∵ PQ || BC and QR || AB
∴ ABCQ is a ||gm
∴ BC = AQ
Similarly, BCAP is a ||gm
∴ BC = AP …(i)
∴ AQ = AP = BL
⇒ PQ = 2BC
Similarly, we can prove that
QR = 2AB and PR = 2AC
Now perimeter of ∆PQR.
= PQ + QR + PR = 2AB + 2BC + 2AC
= 2(AB + BC + AC)
= 2 perimeters of ∆ABC.
Hence proved
Question 15.
In the figure, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are respectively the mid-points of AH, AB, and BC. Prove that PQR = 90°.
Solution:
Given: In ∆ABC, BE ⊥ AC
AD is any line from A to BC meeting BC in D and intersecting BE in H. P, Q, and R are respectively midpoints of AH, AB, and BC. PQ and QR are joined B.
To prove : ∠PQR = 90°
Proof: In ∆ABC,
Q and R the midpoints of AB and BC 1
∴ QR || AC and QR = 12 AC
Similarly, in ∆ABH,
Q and P are the midpoints of AB and AH
∴ QP || BH or QP || BE
But AC ⊥ BE
∴ QP ⊥ QR
∴ ∠PQR = 90°
Question 16.
ABC is a triangle. D is a point on AB such that AD = 14 AB and E is a point on AC such that AE = 14 AC. Prove that DE = 14 BC.
Solution:
Given: In ∆ABC,
D is a point on AB such that
AD = 14 AB and E is a point on AC such as 1
that AE = 14 AC
DE is joined.
To prove : DE = 14 BC
Construction: Take P and Q the midpoints of AB and AC and join them
Proof: In ∆ABC,
∵ P and Q are the mid-points of AB and AC
Question 17.
In the figure, ABCD is a parallelogram in which P is the mid-point of DC and Q is a point on AC such that CQ = 14 AC. If PQ produced meets BC at R, prove that R is a mid-point of BC.
Solution:
Given : In ||gm ABCD,
P is the mid-point of DC and Q is a point on AC such that CQ = 14 AC. PQ is produced and meets BC at R.
To prove: R is midpoint of BC
Construction: Join BD
Proof : ∵ In ||gm ABCD,
∵ Diagonal AC and BD bisect each other at O
∴ AO = OC = 12 AC …(i)
In ∆OCD,
P and Q the mid-points of CD and CO
∴ PQ || OD and PQ = 12 OD
In ∆BCD,
P is mid-poiht of DC and PQ || OD (Proved above)
Or PR || BD
∴ R is mid-point BC.
Question 18.
In the figure, ABCD and PQRC are rectangles and Q is the mid-point of AC.
Prove that (i) DP = PC (ii) PR = 12 AC.
Solution:
Given: ABCD is PQRC are rectangles and Q is the mid-point of AC.
To prove : (i) DP = PC (ii) PR = 12 AC
Construction: Join diagonal AC which passes through Q and joins PR.
Proof : (i) In ∆ACD,
Q is the mid-point of AC and QP || AD (Sides of rectangles)
∴ P is the mid-point of the CD
∴ DP = PC
(ii) ∵PR and QC are the diagonals of rectangle PQRC
∴ PR = QC
But Q is the mid-point of AC
∴ QC = 12 AC
Hence PR = 12 AC
Question 19.
ABCD is a parallelogram, and E and F are the midpoints AB and CD respectively. GFI is any line intersecting AD, EF and BC at Q P, and H respectively. Prove that GP = PH.
Solution:
Given : In ||gm ABCD,
E and F are mid-points of AB and CD
GH is any line intersecting AD, EF and BC at GP and H respectively
To prove : GP = PH
Proof: ∵ E and F are the mid-points of AB and CD
Question 20.
BM and CN are perpendicular to a line passing, through the vertex A of a triangle ABC. If L is the mid-point of BC, prove that LM = LN.
Solution:
In ∆ABC,
BM and CN are perpendicular on a line drawn from A.
L is the midpoint of BC.
ML and NL are joined.
We have included all the information regarding CBSE RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4. If you have any queries feel free to ask in the comment section.
FAQ: RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4
Can I download RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4 PDF free?
Yes, you can download RD Sharma Class 9 Solutions Chapter 13 Exercise 13.4 PDF free.
What are the benefits of studying RD Sharma Class 9 Solutions?
By practicing RD Sharma Class 9 Solutions, students can earn higher academic grades. Our experts solve these solutions with utmost accuracy to help students in their studies.
Is RD Sharma enough for Class 12 Maths?
RD Sharma is a good book that gives you thousands of questions to practice.