RD Sharma Class 9 Solutions Chapter 12 VSAQs: Clear your upcoming Maths exam with flying colors by preparing thr RD Sharma Solutions Class 9 Maths. All the solutions are designed by subject matter experts and are as per the current CBSE Syllabus. You can easily clear your doubts with the RD Sharma Class 9 Solutions Chapter 12 VSAQs. To know more, read the whole blog.
Access answers of RD Sharma Class 9 Solutions Chapter 12 VSAQs
Question 1.
Solution:
In two congruent triangles ABC and DEF, if AB = DE and BC = EF. Name the pairs of equal angles.
In AABC and ADEF,
∆ABC ≅ ∆DEF
and AB = DE, BC = EF
∴ ∠A = ∠D, ∠B = ∠E and ∠C = ∠F
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 1
Question 2.Solution:
In two triangles ABC and DEF, it is given that ∠A = ∠D, ∠B = ∠E and ∠C = ∠F. Are the two triangles necessarily congruent?
No, as the triangles are equiangular, so similar.
Question 3.Solution:
If ABC and DEF are two triangles such that AC = 2.5 cm, BC = 5 cm, ∠C = 75°, DE = 2.5 cm, DF = 5 cm and ∠D = 75°. Are two triangles congruent?
Yes, triangles are congruent (SAS axiom)
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 3
Question 4.Solution:
In two triangles ABC and ADC, if AB = AD and BC = CD. Are they congruent?
Yes, these are congruent
In two triangles ABC are ADC,
AB = AD (Given)
BC = CD (Given)
and AC = AC (Common)
∴ ∆sABC ≅ AADC (SSS axiom)
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 4
Question 5.Solution:
In triangles ABC and CDE, if AC = CE, BC = CD, ∠A = 60°, ∠C – 30° and ∠D = 90°. Are two triangles congruent?
Yes, triangles are congruent because,
In ∆ABC, and ∆CDE,
AC = CE
BC = CD ∠C = 30°
∴ ∆ABC ≅ ∆CDE (SAS axiom)
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 5
Question 6.Solution:
ABC is an isosceles triangle in which AB = AC. BE and CF are its two medians. Show that BE = CF.
Given : In ∆ABC, AB = AC
BE and CF are two medians
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 6
To prove : BE = CF
Proof: In ∆ABE and ∆ACF.
AB = AC (Given)
∠A = ∠A (Common)
AE = AF (Half of equal sides)
∴ ∆ABE ≅ ∆ACF (SAS axiom)
∴ BE = CF (c.p.c.t.)
Question 7.Solution:
Find the measure of each angle of an equilateral triangle.
In ∆ABC,
AB = AC = BC
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 7
∵ AB = AC
∴ ∠C = ∠B …(i)
(Angles opposite to equal sides)
Similarly,
AC = BC
∴ ∠B = ∠A …(ii)
From (i) and (ii),
∠A = ∠B = ∠C
But ∠A + ∠B + ∠C = 180°
(Sum of angles of a triangle)
∴ ∠A + ∠B + ∠C = 180∘3 = 60°
Question 8.Solution:
CDE is an equilateral triangle formed on a side CD of a square ABCD. Show that ∆ADE ≅ ∆BCE.
Given : An equilateral ACDE is formed on the side of square ABCD. AE and BE are joined
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 8
To prove : ∆ADE ≅ ∆BCE
Proof : In ∆ADE and ∆BCE,
AD = BC (Sides of a square)
DE = CE (Sides of equilateral triangle)
∠ADE = ∠BCE(Each = 90° + 60° = 150°)
∴ AADE ≅ ABCE (SAS axiom)
Question 9.Solution:
Prove that the sum of three altitude of a triangle is less than the sum of its sides.
Given : In ∆ABC, AD, BE and CF are the altitude of ∆ABC
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 9
To prove : AD + BE + CF < AB + BC + CA
Proof : In right ∆ABD, ∠D = 90°
Then other two angles are acute
∵ ∠B < ∠D
∴ AD < AB …(i)
Similarly, in ∆BEC and ∆ABE we can prove thatBE and CF < CA …(iii)
Adding (i), (ii), (iii)
AD + BE -t CF < AB + BC + CA
Question 10.Solution:
In the figure, if AB = AC and ∠B = ∠C. Prove that BQ = CP.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula VSAQS – 10
Given : In the figure, AB = AC, ∠B = ∠C
To prove : BQ = CP
Proof : In ∆ABQ and ∆ACP
AB = AC (Given)
∠A = ∠A (Common)
∠B = ∠C (Given)
∴ ∆ABQ ≅ ∆ACP (ASA axiom)
∴ BQ = CP (c.p.c.t.)
This is the complete blog on RD Sharma Class 9 Solutions Chapter 12 VSAQs. To know more about the CBSE Class 9 Maths exam, ask in the comments.
FAQs on RD Sharma Class 9 Solutions Chapter 12 VSAQs
How many questions are there in RD Sharma Class 9 Solutions Chapter 12 VSAQs?
There are 10 questions in RD Sharma Class 9 Solutions for Chapter 12 VSAQs.
Is it even beneficial to study RD Sharma for Class 9 Solutions Chapter 12 VSAQs?
Yes, your preparation will be strengthened with this amazing help book. All your questions will be answered by this book.
Are the solutions RD Sharma Class 9 Solutions Chapter 12 VSAQs relevant?
The solutions are relevant as they are designed by the subject matter experts.