RD Sharma Class 10 Solutions Chapter 5 Exercise 5.3: The following RD Sharma Solutions Class 10 exercise 5.3 contains a number of problems to help students better understand this concept. The solutions are written in simple Language to meet the needs of all students. For a full explanation of the questions in this exercise, students can download RD Sharma Solutions for Class 10 Maths Chapter 5 Trigonometric Ratios Exercise 5.3 PDF, which is provided below.
Download RD Sharma Class 10 Solutions Chapter 5 Exercise 5.3 Free PDF
RD Sharma Class 10 Solutions Chapter 5 Exercise 5.3
Access answers to RD Sharma Solutions Class 10 Maths Chapter 5 Exercise 5.3- Important Question with Answers
1. Evaluate the following:
(i) sin 20o/ cos 70o
(ii) cos 19o/ sin 71o
(iii) sin 21o/ cos 69o
(iv) tan 10o/ cot 80o
(v) sec 11o/ cosec 79o
Solution:
(i) We have,
sin 20o/ cos 70o = sin (90o – 70o)/ cos 70o = cos 70o/ cos70o = 1 [∵ sin (90 – θ) = cos θ]
(ii) We have,
cos 19o/ sin 71o = cos (90o – 71o)/ sin 71o = sin 71o/ sin 71o = 1 [∵ cos (90 – θ) = sin θ]
(iii) We have,
sin 21o/ cos 69o = sin (90o – 69o)/ cos 69o = cos 69o/ cos69o = 1 [∵ sin (90 – θ) = cos θ]
(iv) We have,
tan 10o/ cot 80o = tan (90o – 10o) / cot 80o = cot 80o/ cos80o = 1 [∵ tan (90 – θ) = cot θ]
(v) We have,
sec 11o/ cosec 79o = sec (90o – 79o)/ cosec 79o = cosec 79o/ cosec 79o = 1
[∵ sec (90 – θ) = cosec θ]
2. Evaluate the following:
Solution:
We have, [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ]
= 12 + 12 = 1 + 1
= 2
(ii) cos 48°- sin 42°
Solution:
We know that cos (90° − θ) = sin θ.
So,
cos 48° – sin 42° = cos (90° − 42°) – sin 42° = sin 42° – sin 42°= 0
Thus, the value of cos 48° – sin 42° is 0.
Solution:
We have, [∵ cot (90 – θ) = tan θ and cos (90 – θ) = sin θ]
= 1 – 1/2(1)
= 1/2
Solution:
We have, [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ]
= 1 – 1
= 0
Solution:
We have, [∵ cot (90 – θ) = tan θ and tan (90 – θ) = cot θ]
= tan (90o – 35o)/ cot 55o + cot (90o – 12o)/ tan 12o – 1
= cot 55o/ cot 55o + tan 12o/ tan 12o – 1
= 1 + 1 – 1
= 1
Solution:
We have , [∵ sin (90 – θ) = cos θ and sec (90 – θ) = cosec θ]
= sec (90o – 20o)/ cosec 20o + sin (90o – 31o)/ cos 31o
= cosec 20o/ cosec 20o + cos 12o/ cos 12o
= 1 + 1
= 2
(vii) cosec 31° – sec 59°
Solution:
We have,
cosec 31° – sec 59°
Since, cosec (90 – θ) = cos θ
So,
cosec 31° – sec 59° = cosec (90° – 59o) – sec 59° = sec 59° – sec 59° = 0
Thus,
cosec 31° – sec 59° = 0
(viii) (sin 72° + cos 18°) (sin 72° – cos 18°)
Solution:
We know that,
sin (90 – θ) = cos θ
So, the given can be expressed as
(sin 72° + cos 18°) (sin (90 – 18)° – cos 18°)
= (sin 72° + cos 18°) (cos 18° – cos 18°)
= (sin 72° + cos 18°) x 0
= 0
(ix) sin 35° sin 55° – cos 35° cos 55°
Solution:
We know that,
sin (90 – θ) = cos θ
So, the given can be expressed as
sin (90 – 55)° sin (90 – 35)° – cos 35° cos 55°
= cos 55° cos 35° – cos 35° cos 55°
= 0
(x) tan 48° tan 23° tan 42° tan 67°
Solution:
We know that,
tan (90 – θ) = cot θ
So, the given can be expressed as
tan (90 – 42)° tan (90 – 67)° tan 42° tan 67°
= cot 42° cot 67° tan 42° tan 67°
= (cot 42° tan 42°)(cot 67° tan 67°)
= 1 x 1 [∵ tan θ x cot θ = 1]
= 1
(xi) sec 50° sin 40° + cos 40° cosec 50°
Solution:
We know that,
sin (90 – θ) = cos θ and cos (90 – θ) = sin θ
So, the given can be expressed as
sec 50° sin (90 – 50)° + cos (90 – 50)° cosec 50°
= sec 50° cos 50° + sin 50° cosec 50°
= 1 + 1 [∵ sin θ x cosec θ = 1 and cos θ x sec θ = 1]
= 2
3. Express each one of the following in terms of trigonometric ratios of angles lying between 0o and 45o
(i) sin 59o + cos 56o (ii) tan 65o + cot 49o (iii) sec 76o + cosec 52o
(iv) cos 78o + sec 78o (v) cosec 54o + sin 72o (vi) cot 85o + cos 75o
(vii) sin 67o + cos 75o
Solution:
Using the below trigonometric ratios of complementary angles, we find the required
sin (90 – θ) = cos θ cosec (90 – θ) = sec θ
cos (90 – θ) = sin θ sec (90 – θ) = cosec θ
tan (90 – θ) = cot θ cot (90 – θ) = tan θ
(i) sin 59o + cos 56o = sin (90 – 31)o + cos (90 – 34)o = cos 31o + sin 34o
(ii) tan 65o + cot 49o = tan (90 – 25)o + cot (90 -41)o = cot 25o + tan 41o
(iii) sec 76o + cosec 52o = sec (90 – 14)o + cosec (90 – 38)o = cosec 14o + sec 38o
(iv) cos 78o + sec 78o = cos (90 – 12)o + sec (90 – 12)o = sin 12o + cosec 12o
(v) cosec 54o + sin 72o = cosec (90 – 36)o + sin (90 – 18)o = sec 36o + cos 18o
(vi) cot 85o + cos 75o = cot (90 – 5)o + cos (90 – 15)o = tan 5o + sin 15o
4. Express cos 75o + cot 75o in terms of angles between 0o and 30o.
Solution:
Given,
cos 75o + cot 75o
Since, cos (90 – θ) = sin θ and cot (90 – θ) = tan θ
cos 75o + cot 75o = cos (90 – 15)o + cot (90 – 15)o = sin 15o + tan 15o
Hence, cos 75o + cot 75o can be expressed as sin 15o + tan 15o
5. If sin 3A = cos (A – 26o), where 3A is an acute angle, find the value of A.
Solution:
Given,
sin 3A = cos (A – 26o)
Using cos (90 – θ) = sin θ, we have
sin 3A = sin (90o – (A – 26o))
Now, comparing both L.H.S and R.H.S
3A = 90o – (A – 26o)
3A + (A – 26o) = 90o
4A – 26o = 90o
4A = 116o
A = 116o/4
∴ A = 29o
6. If A, B, C are the interior angles of a triangle ABC, prove that
(i) tan ((C + A)/ 2) = cot (B/2) (ii) sin ((B + C)/ 2) = cos (A/2)
Solution:
We know that in triangle ABC, the sum of the angles, i.e., A + B + C = 180o
So, C + A = 180o – B ⇒ (C + A)/2 = 90o – B/2 …… (i)
And, B + C = 180o – A ⇒ (B + C)/2 = 90o – A/2 ……. (ii)
(i) L.H.S = tan ((C + A)/ 2)
⇒ tan ((C + A)/ 2) = tan (90o – B/2) [From (i)]
= cot (B/2) [∵ tan (90 – θ) = cot θ]
= R.H.S
- Hence Proved
(ii) L.H.S = sin ((B + C)/2)
⇒ sin ((B + C)/ 2) = sin (90o – A/2) [From (ii)]
= cos (A/2)
= R.H.S
- Hence Proved
7. Prove that:
(i) tan 20° tan 35° tan 45° tan 55° tan 70° = 1
(ii) sin 48° sec 48° + cos 48° cosec 42° = 2
Solution:
(i) Taking L.H.S = tan 20° tan 35° tan 45° tan 55° tan 70°
= tan (90° − 70°) tan (90° − 55°) tan 45°tan 55° tan70°
= cot 70°cot 55° tan 45° tan 55° tan 70° [∵ tan (90 – θ) = cot θ]
= (tan 70°cot 70°)(tan 55°cot 55°) tan 45° [∵ tan θ x cot θ = 1]
= 1 × 1 × 1 = 1
- Hence proved
(ii) Taking L.H.S = sin 48° sec 48° + cos 48° cosec 42°
= sin 48° sec (90° − 48°) + cos 48° cosec (90° − 48°)
[∵sec (90 – θ) = cosec θ and cosec (90 – θ) = sec θ]
= sin 48°cosec 48° + cos 48°sec 48° [∵ cosec θ x sin θ = 1 and cos θ x sec θ = 1]
= 1 + 1 = 2
- Hence proved
(iii) Taking the L.H.S,
= 1 + 1 – 2
= 2 – 2
= 0
- Hence proved
(iv) Taking L.H.S,
= 1 + 1
= 2
- Hence proved
8. Prove the following:
(i) sinθ sin (90o – θ) – cos θ cos (90o – θ) = 0
Solution:
Taking the L.H.S,
sinθ sin (90o – θ) – cos θ cos (90o – θ)
= sin θ cos θ – cos θ sin θ [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ]
= 0
(ii)
Solution:
Taking the L.H.S,
[∵ cosec θ x sin θ = 1 and cos θ x sec θ = 1]
= 1 + 1
= 2 = R.H.S
- Hence Proved
(iii)
Solution:
Taking the L.H.S, [∵ tan (90o – θ) = cot θ]
= 0 = R.H.S
- Hence Proved
(iv)
Solution:
Taking L.H.S, [∵ sin (90 – θ) = cos θ and cos (90 – θ) = sin θ]
= sin2 A = R.H.S
- Hence Proved
(v) sin (50o + θ) – cos (40o – θ) + tan 1o tan 10o tan 20o tan 70o tan 80o tan 89o = 1
Solution:
Taking the L.H.S,
= sin (50o + θ) – cos (40o – θ) + tan 1o tan 10o tan 20o tan 70o tan 80o tan 89o
= [sin (90o – (40o – θ))] – cos (40o – θ) + tan (90 – 89)o tan (90 – 80)o tan (90 – 70)o tan 70o tan 80o tan 89o [∵ sin (90 – θ) = cos θ]
= cos (40o – θ) – cos (40o – θ) + cot 89o cot 80o cot 70o tan 70o tan 80o tan 89o
[∵ tan (90o – θ) = cot θ]
= 0 + (cot 89o x tan 89o) (cot 80o x tan 80o) (cot 70o x tan 70o)
= 0 + 1 x 1 x 1 [∵ tan θ x cot θ = 1]
= 1= R.H.S
- Hence Proved
We have provided complete details of RD Sharma Class 10 Solutions Chapter 5 Exercise 5.3. If you have any queries related to CBSE Class 10, feel free to ask us in the comment section below.
FAQs on RD Sharma Class 10 Solutions Chapter 5 Exercise 5.3
What are the benefits of using RD Sharma Class 10 Maths Solutions Chapter 5 Exercise 5.3?
1. Correct answers according to the latest CBSE guidelines and syllabus.
2. The RD Sharma Class 10 Maths Solutions Chapter 5 Exercise 5.3 is written in simple language to assist students in their board examination, & competitive examination preparation.
Where can I download RD Sharma Class 10 Maths Solutions Chapter 5 Exercise 5.3 free PDF?
You can download RD Sharma Class 10 Maths Solutions Chapter 5 Exercise 5.3 free PDF from the above article.
Is it important to study all of the concepts included in RD Sharma Class 10 Solutions Chapter 5 Exercise 5.3?
Yes, learning all of the concepts included in RD Sharma Solutions for Class 10 Maths Chapter 5 Exercise 5.3 is required in order to achieve high scores on the Class 10 board exams. These solutions were created by subject matter specialists who compiled model questions that covered all of the textbook’s exercise questions.