RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 (Updated for 2024)

RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2

RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2: An algebraic expression made up of two words is called a binomial expression. For students who want to learn the correct steps to solve such problems, RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 is available in PDF format, and students can easily download the PDF from the link provided below.

Download RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 PDF:

 


RD-Sharma-Solutions-Class-11-Maths-Chapter-18-Ex-18.2

Access RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2

1. Find the 11th term from the beginning and the 11th term from the end in the expansion of (2x – 1/x2)25.

Solution:

Given:

(2x – 1/x2)25

The given expression contains 26 terms.

So, the 11th term from the end is the (26 − 11 + 1) th term from the beginning.

In other words, the 11th term from the end is the 16th term from the beginning.

Then,

T16 = T15+1 = 25C15 (2x)25-15 (-1/x2)15

25C15 (210) (x)10 (-1/x30)

= – 25C15 (210 / x20)

Now, we shall find the 11th term from the beginning.

T11 = T10+1 = 25C10 (2x)25-10 (-1/x2)10

25C10 (215) (x)15 (1/x20)

25C10 (215 / x5)

2. Find the 7th term in the expansion of (3x2 – 1/x3)10.

Solution:

Given:

(3x2 – 1/x3)10

Let us consider the 7th term as T7

So,

T7 = T6+1

10C6 (3x2)10-6 (-1/x3)6

10C6 (3)4 (x)8 (1/x18)

= [10×9×8×7×81] / [4×3×2×x10]

= 17010 / x10

∴ The 7th term of the expression (3x2 – 1/x3)10 is 17010 / x10.

3. Find the 5th term in the expansion of (3x – 1/x2)10.

Solution:

Given:

(3x – 1/x2)10

The 5th term from the end is the (11 – 5 + 1)th, is., 7th term from the beginning.

So,

T7 = T6+1

10C6 (3x)10-6 (-1/x2)6

10C6 (3)4 (x)4 (1/x12)

= [10×9×8×7×81] / [4×3×2×x8]

= 17010 / x8

∴ The 5th term of the expression (3x – 1/x2)10 is 17010 / x8.

4. Find the 8th term in the expansion of (x3/2 y1/2 – x1/2 y3/2)10.

Solution:

Given:

(x3/2 y1/2 – x1/2 y3/2)10

Let us consider the 8th term as T8

So,

T8 = T7+1

10C7 (x3/2 y1/2)10-7 (-x1/2 y3/2)7

= -[10×9×8]/[3×2] x9/2 y3/2 (x7/2 y21/2)

= -120 x8y12

∴ The 8th term of the expression (x3/2 y1/2 – x1/2 y3/2)10 is -120 x8y12.

5. Find the 7th term in the expansion of (4x/5 + 5/2x) 8.

Solution:

Given:

(4x/5 + 5/2x) 8

Let us consider the 7th term as T7

So,

T7 = T6+1

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 21

∴ The 7th term of the expression (4x/5 + 5/2x) 8 is 4375/x4.

6. Find the 4th term from the beginning and 4th term from the end in the expansion of (x + 2/x) 9.

Solution:

Given:

(x + 2/x) 9

Let Tr+1 be the 4th term from the end.

Then, Tr+1 is (10 − 4 + 1)th, i.e., 7th, the term from the beginning.

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 22

7. Find the 4th term from the end in the expansion of (4x/5 – 5/2x) 9.

Solution:

Given:

(4x/5 – 5/2x) 9

Let Tr+1 be the 4th term from the end of the given expression.

Then, Tr+1 is (10 − 4 + 1)th term, i.e., the 7th term, from the beginning.

T7 = T6+1

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 23

∴ The 4th term from the end is 10500/x3.

8. Find the 7th term from the end in the expansion of (2x2 – 3/2x) 8.

Solution:

Given:

(2x2 – 3/2x) 8

Let Tr+1 be the 4th term from the end of the given expression.

Then, Tr+1 is (9 − 7 + 1)th term, i.e., 3rd term, from the beginning.

T3 = T2+1

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 24

∴ The 7th term from the end is 4032 x10.

9. Find the coefficient of:

(i)  x10 in the expansion of (2x2 – 1/x)20

(ii) x7 in the expansion of (x – 1/x2)40

(iii) x-15 in the expansion of (3x2 – a/3x3)10

(iv) x9 in the expansion of (x2 – 1/3x)9

(v) xm in the expansion of (x + 1/x)n

(vi) x in the expansion of (1 – 2x3 + 3x5) (1 + 1/x)8

(vii) a5b7 in the expansion of (a – 2b)12

(viii) x in the expansion of (1 – 3x + 7x2) (1 – x)16

Solution:

(i)  x10 in the expansion of (2x2 – 1/x)20

Given:

(2x2 – 1/x)20

If  x10 occurs in the (r + 1)th term in the given expression.

Then, we have:

Tr+1 nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 25

(ii) x7 in the expansion of (x – 1/x2)40

Given:

(x – 1/x2)40

If xoccurs at the (r + 1) th term in the given expression.

Then, we have:

Tr+1 nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 26

40 − 3r =7

3r = 40 – 7

3r = 33

r = 33/3

= 11

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 27

(iii) x-15 in the expansion of (3x2 – a/3x3)10

Given:

(3x2 – a/3x3)10

If x−15 occurs at the (r + 1)th term in the given expression.

Then, we have:

Tr+1 nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 28

(iv) x9 in the expansion of (x2 – 1/3x)9

Given:

(x2 – 1/3x)9

If x9 occurs at the (r + 1)th term in the above expression.

Then, we have:

Tr+1 nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 29

For this term to contain x9, we must have

18 − 3r = 9

3r = 18 – 9

3r = 9

r = 9/3

= 3

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 30

(v) xm in the expansion of (x + 1/x)n

Given:

(x + 1/x)n

If xm occurs at the (r + 1)th term in the given expression.

Then, we have:

Tr+1 nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 31

(vi) x in the expansion of (1 – 2x3 + 3x5) (1 + 1/x)8

Given:

(1 – 2x3 + 3x5) (1 + 1/x)8

If x occurs at the (r + 1)th term in the given expression.

Then, we have:

(1 – 2x3 + 3x5) (1 + 1/x)8 = (1 – 2x3 + 3x5) (8C0 + 8C1 (1/x) + 8C2 (1/x)2 + 8C3 (1/x)3 + 8C4 (1/x)4 + 8C5 (1/x)5 + 8C6 (1/x)6 + 8C7 (1/x)7 + 8C8 (1/x)8)

So, ‘x’ occurs in the above expression at -2x3.8C2 (1/x2) + 3x5.8C4 (1/x4)

∴ Coefficient of x = -2 (8!/(2!6!)) + 3 (8!/(4! 4!))

= -56 + 210

= 154

(vii) a5b7 in the expansion of (a – 2b)12

Given:

(a – 2b)12

If a5b7 occurs at the (r + 1)th term in the given expression.

Then, we have:

Tr+1 nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 32

(viii) x in the expansion of (1 – 3x + 7x2) (1 – x)16

Given:

(1 – 3x + 7x2) (1 – x)16

If x occurs at the (r + 1)th term in the given expression.

Then, we have:

(1 – 3x + 7x2) (1 – x)16 = (1 – 3x + 7x2) (16C0 + 16C1 (-x) + 16C2 (-x)2 + 16C3 (-x)3 + 16C4 (-x)4 + 16C5 (-x)5 + 16C6 (-x)6 + 16C7 (-x)7 + 16C8 (-x)8 + 16C9 (-x)9 + 16C10 (-x)10 + 16C11 (-x)11 + 16C12 (-x)12 + 16C13 (-x)13 + 16C14 (-x)14 + 16C15 (-x)15 + 16C16 (-x)16)

So, ‘x’ occurs in the above expression at 16C1 (-x) – 3x16C0

∴ Coefficient of x = -(16!/(1! 15!)) – 3(16!/(0! 16!))

= -16 – 3

= -19

10. Which term in the expansion of RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 33contains x and y to one and the same power?

Solution:

Let us consider Tr+1 th term in the given expansion contains x and y to one and the same power.

Then we have,

Tr+1 = nCr xn-r ar

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 34

RD Sharma Solutions for Class 11 Maths Chapter 18 – Binomial Theorem image - 35

We have included all the information regarding CBSE RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2. If you have any queries feel free to ask in the comment section. 

FAQ: RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2

What are the benefits of studying from RD Sharma Solutions Class 12?

By practicing these solutions, students can earn higher academic grades. Our experts solve these solutions with utmost accuracy to help students in their studies.

Can I download RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 PDF free?

Yes, you can download RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 PDF free.

Is RD Sharma enough for Class 12 Maths?

RD Sharma is a good book that gives you thousands of questions to practice.

Can I open RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 PDF on my smartphone?

Yes, you can open RD Sharma Solutions Class 11 Maths Chapter 18 Exercise 18.2 PDF on any device.

Leave a Comment

Top 10 Professional Courses With High-Paying Jobs 2024 Top 8 Online MCA Colleges in India 2024 Skills You Will Gain from an Online BBA Programme How to stay motivated during distance learning Things to know before starting with first year of medical school