RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3 (Updated for 2024)

RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3

RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3: Clear your exams with the RD Sharma Solutions Class 9 Maths. You can easily download the PDF of RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3. All the solutions are as per the current CBSE syllabus and are easy to understand. To know more, read the whole blog. 

Download RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3 PDF

RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3

 


Access RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3

Question 1: Find the cube of each of the following binomial expressions:

(i) (1/x + y/3)

(ii) (3/x – 2/x2)

(iii) (2x + 3/x)

(iv) (4 – 1/3x)

Solution:

[Using identities: (a + b)3 = a3 + b3 + 3ab(a + b) and (a – b)3 = a3 – b3 – 3ab(a – b) ]

(i)

RD sharma class 9 maths chapter 4 ex 4.3 Q1 part 1 solution

(ii)

RD sharma class 9 maths chapter 4 ex 4.3 Q1 part 2 solution

(iii)

RD sharma class 9 maths chapter 4 ex 4.3 Q1 part 3 solution

(iv)

RD sharma class 9 maths chapter 4 ex 4.3 Q1 part 4 solution

Question 2: Simplify each of the following:

(i) (x + 3)3 + (x – 3) 3

(ii) (x/2 + y/3) 3 – (x/2 – y/3) 3

(iii) (x + 2/x) 3 + (x – 2/x) 3

(iv) (2x – 5y) 3 – (2x + 5y) 3

Solution:

[Using identities:

a3 + b3 = (a + b)(a2 + b2 – ab)

a3 – b3 = (a – b)(a2 + b2 + ab)

(a + b)(a-b) = a2 – b2

(a + b)= a2 + b2 + 2ab and

(a – b)= a2 + b2 – 2ab]

(i) (x + 3)3 + (x – 3) 3

Here a = (x + 3), b = (x – 3)

RD sharma class 9 maths chapter 4 ex 4.3 Q2 solution part 1

(ii) (x/2 + y/3) 3 – (x/2 – y/3) 3

Here a = (x/2 + y/3) and b = (x/2 – y/3)

RD sharma class 9 maths chapter 4 ex 4.3 Q2 solution part 2

(iii) (x + 2/x) 3 + (x – 2/x) 3

Here a = (x + 2/x) and b = (x – 2/x)

RD sharma class 9 maths chapter 4 ex 4.3 Q2 solution part 3

(iv) (2x – 5y) 3 – (2x + 5y) 3

Here a = (2x – 5y) and b = 2x + 5y

RD sharma class 9 maths chapter 4 ex 4.3 Q2 solution part 4

Question 3: If a + b = 10 and ab = 21, find the value of a3 + b3.

Solution:

a + b = 10, ab = 21 (given)

Choose a + b = 10

Cubing both sides,

(a + b)3 = (10)3

a3 + b3 + 3ab(a + b) = 1000

a3 + b3 + 3 x 21 x 10 = 1000 (using given values)

a3 + b3 + 630 = 1000

a3 + b3 = 1000 – 630 = 370

or a3 + b3 = 370

Question 4: If a – b = 4 and ab = 21, find the value of a3 – b3.

Solution:

a – b = 4, ab= 21 (given)

Choose a – b = 4

Cubing both sides,

(a – b)3 = (4)3

a3 – b3 – 3ab (a – b) = 64

a3 – b3 – 3 × 21 x 4 = 64 (using given values)

a3 – b3 – 252 = 64

a3 – b3 = 64 + 252

= 316

Or a3 – b3 = 316

Question 5: If x + 1/x = 5, find the value of x3 + 1/x.

Solution:

Given: x + 1/x = 5

Apply Cube on x + 1/x

RD sharma class 9 maths chapter 4 ex 4.3 Q5 solution

Question 6: If x – 1/x = 7, find the value of x3 – 1/x.

Solution:

Given: x – 1/x = 7

Apply Cube on x – 1/x

RD sharma class 9 maths chapter 4 ex 4.3 Q6 solution

Question 7: If x – 1/x = 5, find the value of x3 – 1/x.

Solution:

Given: x – 1/x = 5

Apply Cube on x – 1/x

RD sharma class 9 maths chapter 4 ex 4.3 Ques 7 solution

Question 8: If (x2 + 1/x2) = 51, find the value of x3 – 1/x3.

Solution:

We know that: (x – y)2 = x2 + y2 – 2xy

Replace y with 1/x, we get

(x – 1/x)2 = x2 + 1/x2 – 2

Since (x2 + 1/x2) = 51 (given)

(x – 1/x)2 = 51 – 2 = 49

or (x – 1/x) = ±7

Now, Find x3 – 1/x3

We know that, x3 – y3 = (x – y)(x2 + y2 + xy)

Replace y with 1/x, we get

x3 – 1/x3 = (x – 1/x)(x2 + 1/x2 + 1)

Use (x – 1/x) = 7 and (x2 + 1/x2) = 51

x3 – 1/x3 = 7 x 52 = 364

x3 – 1/x3 = 364

Question 9: If (x2 + 1/x2) = 98, find the value of x3 + 1/x3.

Solution:

We know that: (x + y)2 = x2 + y2 + 2xy

Replace y with 1/x, we get

(x + 1/x)2 = x2 + 1/x2 + 2

Since (x2 + 1/x2) = 98 (given)

(x + 1/x)2 = 98 + 2 = 100

or (x + 1/x) = ±10

Now, Find x3 + 1/x3

We know that, x3 + y3 = (x + y)(x2 + y2 – xy)

Replace y with 1/x, we get

x3 + 1/x3 = (x + 1/x)(x2 + 1/x2 – 1)

Use (x + 1/x) = 10 and (x2 + 1/x2) = 98

x3 + 1/x3 = 10 x 97 = 970

x3 + 1/x3 = 970

Question 10: If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 27y3.

Solution:

Given: 2x + 3y = 13, xy = 6

Cubing 2x + 3y = 13 both sides, we get

(2x + 3y)3 = (13)3

(2x)3 + (3y) 3 + 3( 2x )(3y) (2x + 3y) = 2197

8x3 + 27y3 + 18xy(2x + 3y) = 2197

8x3 + 27y3 + 18 x 6 x 13 = 2197

8x3 + 27y3 + 1404 = 2197

8x3 + 27y3 = 2197 – 1404 = 793

8x3 + 27y3 = 793

Question 11: If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.

Solution:

Given: 3x – 2y = 11 and xy = 12

Cubing 3x – 2y = 11 both sides, we get

(3x – 2y)3 = (11)3

(3x)3 – (2y)3 – 3 ( 3x)( 2y) (3x – 2y) =1331

27x3 – 8y3 – 18xy(3x -2y) =1331

27x3 – 8y3 – 18 x 12 x 11 = 1331

27x3 – 8y3 – 2376 = 1331

27x3 – 8y3 = 1331 + 2376 = 3707

27x3 – 8y3 = 3707

This is the complete blog of RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.3. To know more about the CBSE Class 9 Maths, ask in the comments.

FAQs on RD Sharma Class 9 Solutions Chapter 4 Exercise 4.3

How much does it cost to download the PDF of RD Sharma Solutions for Class 9 Maths Chapter 4 Exercise 4.3?

You can download it for free.

How many questions are there in RD Sharma Solutions for Class 9 Maths Chapter 4 Exercise 4.3?

There are 19 questions in RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.3.

From where can I download the PDF of RD Sharma Solutions Class 9 Maths Chapter 4 Exercise 4.3?

You can find the download link from the above blog.

Leave a Comment

Top 10 Professional Courses With High-Paying Jobs 2024 Top 8 Online MCA Colleges in India 2024 Skills You Will Gain from an Online BBA Programme How to stay motivated during distance learning Things to know before starting with first year of medical school