• Crash Course Classes Under The Mentorship of  Prof. Vivekananda Dimbam, Engineering Physics

Crash Course Classes Under The Mentorship of Prof. Vivekananda Dimbam, Engineering Physics

By Prof. Vivekananda Dimbam more
1132 Views
Offer Price : ₹6,999.00

Upcoming...

Product Specifications

Publisher Live Tutor All GATE Physics books by Live Tutor
Author: Prof. Vivekananda Dimbam
Subject Network Analysis, Physics - Signal and system, Power system, Power Electronics
No of Classes 39
Available
Available in all digital devices

I Am Vivekananda Dimbam, Who is Passionate to TEACH, Design & deploy, review & UPDATE THE Education MODULES of COMPETITIVE SEGMENTS like

IIT GATE / JEE-NEET /CAT / IAS Exams / Science & Maths Olympiad / NTSE & NSTSE Mental ability & Scholasitic Ability Modules

and to successfully administer and manage the activities as Faculty in the Interactive Curriculum of a progressive and vibrant Academic Institutions.

Detail Timing :

Mon - Sat - 09:00 AM - 10:00 AM

 
We Will Covered All the Section as below : 
Section 1: Mathematical Physics  Vector calculus: 
linear vector space: basis, orthogonality and completeness; matrices; similarity transformations,  diagonalization,  eigenvalues  and  eigenvectors;  linear  differential  equations: 
second order linear differential equations and solutions involving special functions; complex analysis:  Cauchy Riemann  conditions,  Cauchy's  theorem,  singularities,  residue  theorem  and
applications;  Laplace  transform,  Fourier  analysis;  elementary  ideas  about  tensors:  covariant and contravariant tensors
Section 2: Classical Mechanics  Lagrangian formulation: D'Alembert's principle, Euler Lagrange equation, Hamilton's principle, calculus of variations; symmetry and conservation laws; central force motion: Kepler problem 
and Rutherford scattering; small oscillations: coupled oscillations and normal modes; rigid body dynamics:  interia  tensor,  orthogonal  transformations,    Euler  angles,  Torque  free  motion  of a symmetric top; Hamiltonian and Hamilton's equations of motion; Liouville's theorem; canonical transformations: action angle variables, Poisson brackets, Hamilton Jacobi equation.
Special  theory  of  relativity: Lorentz  transformations,  relativistic  kinematics,  mass-energy equivalence
Section 3: Electromagnetic Theory  Solutions  of  electrostatic  and  magnetostatic  problems  including  boundary  value  problems; method  of  images;  separation  of  variables;  dielectrics and  conductors;  magnetic  materials; 
multipole expansion; Maxwell's equations; scalar and vector potentials; Coulomb and Lorentz gauges; electromagnetic waves in free space, non-conducting and conducting media; reflection 
and  transmission  at  normal  and  oblique  incidences;  polarization  of  electromagnetic  waves; Poynting vector, Poynting theorem, energy and momentum of electromagnetic waves; radiation from a moving charge
Section 4: Quantum Mechanics  Postulates of quantum mechanics; uncertainty principle; Schrodinger equation; Dirac BraKet notation,  linear  vectors  and  operators  in  Hilbert  space;  one  dimensional  potentials:  step 
potential, finite rectangular well, tunneling from a potential barrier, particle in a box, harmonic oscillator; two and three dimensional systems: concept of degeneracy; hydrogen atom; angular 
momentum and spin; addition of angular momenta; variational method and WKB approximation, time  independent  perturbation  theory;  elementary  scattering  theory,  Born  approximation; 
symmetries in quantum mechanical systems
Section 5: Thermodynamics and Statistical Physics  Laws  of  thermodynamics;  macrostates  and  microstates;  phase  space;  ensembles;  partition function, free energy, calculation of thermodynamic quantities; classical and quantum statistics; 
degenerate  Fermi  gas;  black  body  radiation  and  Planck's  distribution  law;  Bose-Einstein condensation; first and second order phase transitions, phase equilibria, critical point.
Section 6: Atomic and Molecular Physics  Spectra  of  one-and many-electron  atoms;  spin-orbit  interaction:  LS  and  jj  couplings; fine  and hyperfine structures; Zeeman and Stark effects; electric dipole transitions and selection rules; 
rotational  and  vibrational  spectra  of  diatomic molecules;  electronic  transitions  in  diatomic molecules,  Franck-Condon  principle;  Raman  effect;  EPR,  NMR,  ESR,  X-ray  spectra; lasers: 
Einstein coefficients, population inversion, two and three level systems
Section 7: Solid State Physics  Elements of crystallography; diffraction methods for structure determination; bonding in solids; lattice  vibrations  and thermal  properties  of  solids; free  electron theory;  band  theory  of solids: 
nearly   free   electron   and   tight   binding   models;   metals,   semiconductors   and   insulators; conductivity, mobility and effective mass; Optical properties of solids; Kramer's-Kronig relation, 
intra-and inter-band transitions; dielectric properties of solid; dielectric function, polarizability, ferroelectricity;  magnetic  properties  of  solids;  dia,  para,  ferro,  antiferro  and  ferri-magnetism, 
domains  and  magnetic  anisotropy;  superconductivity:  Type-I  and  Type  II  superconductors, Meissner effect, London equation, BCS Theory, flux quantization
Section 8: Electronics  Semiconductors   in   equilibrium: electron   and   hole   statistics   in   intrinsic   and   extrinsic semiconductors; metal-semiconductor  junctions;  Ohmic  and  rectifying  contacts;  PN  diodes, 
bipolar  junction  transistors,  field  effect  transistors;  negative  and  positive  feedback  circuits; oscillators, operational amplifiers, active filters; basics of digital logic circuits, combinational and 
sequential circuits, flip-flops, timers, counters, registers, A/D and D/A conversion.
Section 9: Nuclear and Particle Physics  Nuclear radii and charge distributions, nuclear binding energy, electric and magnetic moments; semi-empirical mass formula; nuclear models; liquid drop model, nuclear shell model; nuclear 
force and two nucleon problem; alpha decay, beta-decay, electromagnetic transitions in nuclei Rutherford  scattering,  nuclear  reactions,  conservation  laws;  fission  and  fusion;  particle 
accelerators and detectors; elementary particles; photons, baryons, mesons and leptons; quark model;  conservation  laws,  isospin  symmetry,  charge  conjugation,  parity  and  time-reversal 
invariance